

TOMORROW starts here.

111

Cisco ASR 9000 System Architecture

BRKARC-2003

Xander Thuijs CCIE#6775 Principal Engineer

Highend Routing and Optical Group

Dennis Cai, Distinguished Engineer, Technical Marketing

CCIE #6621, R&S, Security

Swiss Army Knife Built for Edge Routing World Cisco ASR9000 Market Roles 1. High-End Aggregation &

Scalable System Architecture and Portfolio Physical and Virtual

4

Other ASR9000 or Cisco IOS XR Sessions

... you might be interested in \bigcirc

- BRKSPG-2904 ASR-9000/IOS-XR Understanding forwarding, troubleshooting the system and XR operations
- TECSPG-3001: Advanced ASR 9000 Operation and Troubleshooting
- BRKSPG-2202: Deploying Carrier Ethernet Services on ASR9000
- BRKARC-2024: The Cisco ASR9000 nV Technology and Deployment
- BRKMPL-2333: E-VPN & PBB-EVPN: the Next Generation of MPLS-based L2VPN
- BRKARC-3003: ASR 9000 New Scale Features FlexibleCLI(Configuration Groups) & Scale ACL's
- BRKSPG-3334: Advanced CG NAT44 and IOS XR Deployment Experience

Agenda

- ASR9000 Hardware System Architecture
 - HW Overview
 - HW Architecture
- ASR 9000 Software System Architecture
 - IOS-XR
 - Control and Forwarding: Unicast, Multicast, L2
 - Queuing
 - ASR 9000 Advanced System Architecture OpenFlow
 - nV (Network Virtualization)

Ciscolive

ASR9000 Hardware System Architecture (1) HW Overview

τ**η** .

ASR 9000 Chassis Overview

Common software image, architecture, identical software features across all chassis

ASR 9010 and ASR 9006 Chassis

Shipping since day 1

ASR 9001 Compact Chassis

Side-to-Side airflow 2RU

Front-to-back air flow with air flow baffles, 4RU, require V2 fan

Sub-slot 0 with MPA

Shipping since IOS-XR 4.2.1 May 2012

Sub-slot 1 with MPA

ASR 9001-S Compact Chassis

Side-to-Side airflow 2RU

Front-to-back air flow with air flow baffles, 4RU, require V2 fan

Shipping since IOS-XR 4.3.1 May 2013

Supported MPAs:

20x1GE 2x10GE 4x10GE 1x40GE

Sub-slot 0 with MPA

Pay As You Grow

- Low entry cost
- SW License upgradable to full 9001

Sub-slot 1 with MPA

ASR 9922 Large Scale Chassis

Shipping since IOS-XR 4.2.2 August 2012

Features	Description	
Power	4 Power Shelves, 16 Power Modules 2.1 KW DC / 3.0 KW AC supplies N+N AC supply redundancy N:1 DC supply redundancy	
Fan	4 Fan Trays Front to back airflow	
I/O Slots	20 I/O slots	
Rack Size	44 RU	
RP	1+1 RP redundancy	
Fabric	6+1 fabric redundancy.	
Bandwidth	Phase 1: 550Gb per Slot Future: 2+Tb per Slot	
SW	XR 4.2.2 – August 2012	

Fully loaded Engineering testbed

ASR 9904 Shipping since 5.1.0, Sep 2013

Front-to-back air flow with air flow baffles, 10RU

Feature	Description	Side-to-Side airflow
I/O Slots	2 I/O slots	6RU
Rack size	6RU	abole Game
Fan	Side to Side Airflow 1 Fan Tray, FRU	
RSPs	RSP440, 1+1 -	
Power	1 Power Shelf, 4 Power Modules 2.1 KW DC / 3.0 KW AC supplies	
Fabric Bandwidth	Phase 1: 770G per Slot (440G/slot with existing Line cards) Future capability: 1.7 Tb per Slot	
SW	XR 5.1.0 – August 2013	

Power and Cooling

- Fans unique to chassis
- Variable speed for ambient temperature variation
- Redundant fan-tray
- Low noise, NEBS and OSHA compliant

Fan is chassis specific

* Version 1 only

- Single power zone
- All power supplies run in active mode
- Power draw shared evenly
- 50 Amp DC Input or 16 Amp AC for Easy CO Install

V2 power supply is common across all modular chassis

Version 1 Power vs Version 2 Power System

ASR 9000 Ethernet Line Card Overview

First-generation LC (Trident*) -L, -B, -E A9K-40G A9K-4T A9K-8T/4 A9K-2T20G A9K-8T A9K-16T/8

http://www.cisco.com/c/en/us/products/routers/asr-9000-series-aggregation-services-routers/eos-eol-notice-c51-731288.html

Trident vs. Typhoon – Features

Feature	Trident	Typhoon *	
nV Cluster	N	Y	
nV Satellite (Fabric Port)	Ν	Y	
BNG (Subscriber Awareness)	N	Y	
SP WiFi	Ν	Y	
MPLS-TP	N	Y	
1588v2 (PTP)	Ν	Υ	
Advanced Vidmon (MDI, RTP metric)	N	Y	
PBB-VPLS	Ν	Y	
IPv6 Enhancement (ABF, LI, SLA, oGRE)	N	Y	
PW-HE	Ν	Υ	
E-VPN/ PBB-EVPN	N	Y	
Scale ACL	Ν	Υ	
VXLAN and VXLAN gateway	Ν	Y	

• Some features are not available yet in SW, although it will be supported on Typhoon hardware

• This is not the complete feature list © 2014 Cisco and/or its alfiliates. All rights reserved.

Cisco Public 18

Modular SPA Linecard

20Gbps, feature ritch, high scale, low speed Interfaces

Quality of Service

- 128k Queues
- 128k Policers
- H-QoS
- Color Policing

Powerful & Flexible QFP Processor

- Flexible uCode Architectue for Feature Richness
- L2 + L3 ServicesL FR, PPP, HDLC, MLPPP, LFI
- L3VPN, MPLS, Netflow, 6PE/6VPE

Scalability

- Distributed Control and Data Plane
- 20Gbits, 4 SPA Bays
- L3 i/f, route, session protocol – scaled for MSE needs

High Availability

- IC-Stateful Switch Over Capability
- MR-APS
- IOS-XR base for high scale and Reliability

SPA Support

- ChOC-3/12/48 (STM1/4/16)
- POS: OC3/STM1, OC12/STM4, OC-48/STM16, OC192/STM64
- ChT1/E1, ChT3/E3, CEoPs, ATM

ASR 9000 Optical Interface Support

- All Linecards use Transceivers
- Based on Density and Interface Type the Transceiver is different

http://www.cisco.com/en/US/prod/collateral/routers/ps9853/data sheet c78-624747.html

Some new additions: - 100Gbase-ER4 CFP - Tunable SFP+ - CWDM 10G XFP+

XFP

CFP

QSFP

SFP, SFP+

1) Using Optical Shelf (ONS15454 M2/M6)

- 1GE (SFP) T, SX, LX, ZX, CWDM/DWDM
- 10GE (XFP & SFP+): SR, LR, ZR, ER, DWDM
- 40GE (QSFP): SR4, LR4
- 100GE (CFP): SR10, LR4, DWDM ¹⁾

All 10G and 40G Ports do

support G.709/OTN/FEC

For latest Transceiver Support Information

Integrated Services Module (ISM)

Carrier Grade v6 (CGv6) Overview

Virtual Services Module (VSM) Supported since IOS XR 5.1.1

ASR 9000 VSM

- Data Center Compute:
 - 4 x Intel 10-core x86 CPU
- 2 Typhoon NPU for hardware network processing
 - 120 Gbps of Raw processing throughput
- HW Acceleration
 - 40 Gbps of hardware assisted Crypto throughput
 - Hardware assist for Reg-Ex matching
- Virtualization Hypervisor (KVM)
- Service VM life cycle management integrated into IOS-XR
- Services Chaining
- SDN SDK for 3rd Party Apps (OnePK)

Cisco ASR 9000 Service Architecture Vision*

Flexible NfV placement for optimal Service Delivery

VSM Architecture

XAUI

25

ASR9000 Hardware System Architecture (2) HW Architecture

Cisco ASR 9000 Hardware System Components

BRKARC-2003

Route Switch Processors (RSPs) and Route Processors (RPs) RSP used in ASR9904/9006/9010, RP used in ASR9922/9912

	9006/9010 RSP	9904/9006/9010 RSP440	9912/9922-RP	
	First generation RP and fabric ASIC	Secondary generation RP and	I fabric ASIC	1
Processors	PPC/Freescale	Intel x86	Intel x86	
	2 Core 1.5GHz	4 Core 2.27 GHz	4 Core 2.27 GHz	
RAM	RSP-4G: 4GB	RSP440-TR: 6GB	-TR: 6GB	
	RSP-8G: 8GB	RSP440-SE: 12GB	-SE: 12GB	
nV EOBC ports	No	Yes, 2 x 1G/10G SFP+	Yes, 2 x 1G/10G SFP+	
Switch fabric bandwidth	92G + 92G	220G + 220G (9006/9010)	660G+110G	
	(fabric integrated on	385G + 385G (9904)	(separated fabric card)	
	RSP)	(fabric integrated on RSP)		1,

Cisco

RSP440 – Faceplate and Interfaces

RSP Engine Architecture

ASR 9000 Switch Fabric Overview

* First generation switch fabric is only supported on 9006 and 9010 chassis. It's fully compatible with all existing line cards

ASR 9006/9010 Switch Fabric Overview 3-Stage Fabric

1st/2nd Generation switch fabric compatibility

System With 2nd Generation Fabric

BRKARC-2003

1st/2nd Generation switch fabric compatibility

BRKARC-2003

ASR 9904 Switch Fabric Overview

ASR 9912/9922 Fabric Architecture: 5-plane System Supported Today

ASR 9912/9922 Fabric Architecture: 7-plane System

Supported in future

ASR 9000 Ethernet Line Card Overview

-L: low queue, -B: Medium queue, -E: Large queue, -TR: transport optimized, -SE: Service edge optimized

ASR 9000 Line Card Architecture Overview

BRKARC-2003

BRKARC-2003 © 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public 40

Module Cards – MOD160

cisco

Module Cards – MOD80

cisco

MPA Port Mapping Examples for 10GE Ports

45

Network Processor Architecture Details

- TCAM: VLAN tag, QoS and ACL classification •
- Stats memory: interface statistics, forwarding statistics etc
- Frame memory: buffer, Queues •
- Lookup Memory: forwarding tables, FIB, MAC, ADJ •
- -TR/-SE, -L/-B/-E
 - Different TCAM/frame/stats memory size for different per-LC QoS, ACL, logical interface scale
 - Same lookup memory for same system wide scale
 mixing different variation of LCs doesn't impact system wide scale Cisco

ASR9001 Architecture

Identical HW Components as the Modular Systems

Ciscolive;

ASR 9001/9001-S Architecture

Identical HW Components as the Modular Systems

ASR 9001/9001-S architecture is based on Typhoon line card, second generation fabric ASIC and RSP

cisco.

ASR 9000 Software System Architecture (1)

53

Industry Hardened IOS XR

Micro Kernel, Modular, Fully Distributed, Moving towards Virtualization

Ciscol

Cisco IOS-XR Software Modularity

- Ability to upgrade independently MPLS, Multicast, Routing protocols and Line Cards
- Ability to release software packages independently
- Notion of optional packages if technology not desired on device (Multicast, MPLS)

Distributed In-Memory Database

- Reliable Multicast IPC improves scale and performance
- Distributed data management model improves performance and Scale
- Single Consolidated view of the system eases maintenance
- CLI, SNMP and XML/Netconf Access for EMS/NMS

Software Maintenance Updates (SMUs)

- Allows for software package installation/removal leveraging on Modularity and Process restart
- Redundant processors are not mandatory (unlike ISSU) and in many cases is non service impacting and may not require reload.
- Mechanism for
 - delivery of critical bug fixes without the need to wait for next maintenance release

SMU Management Architecture

Introducing Cisco Software Manager Available on CCO in the Downloads Section for ASR9000

WW181107W

Iliilii CISCO Products & Services Support Ho	IO5 XR Releases X CLI Source: ASR9K-PX-4.2.3 X	↓ ▷ □
	The SMU meta file where the SMU information is originating from is created on 04/11/2013	
	Q. Type here to search Total : 35 SMUs Not Installed : 29 Installed : 5 Not /	Applicable : 1 Filter (Optimal) 🔍 🗸 Suggest 🗙 🔹 🕤 🕤
Download Software Downloads Home > Products > Routers > Service Provider Edge Routers Select a Software Type: IOS XR Software IOS XR Software Maintenance Upgrades (SMU)	▼ ST DDTS Type Description ♥ ▲ CSCud16470 Optional OSPFv3 reserved field not zero - RFC 5340 ♥ ▲ CSCud29892 Optional bundle replay not processed for a subset of interfaces ♥ ▲ CSCud39251 Recommended 423 SMU Pack2 for ASR9k ♥ ▲ CSCud39254 Recommended NP search memory management failure ♥ ▲ CSCud41912 Optional Multicast packets destined to 239.x are getting FIB looked-up in 4.2.1 ♥ ▲ CSCud41972 Optional Radius Challenge not working ♥ ▲ CSCud54093 Recommended r423 RV V2 Fan Tray SMU ♥ ▲ CSCud5815 Optional qos-ea is blocked by prm_server_by after Qo5 in-place modification ♥ ▲ CSCud32764 Optional ASR9000 SIP-700 Multiple processes blocked on cpp_driver0 processe	Impact Functional Areas SMU ID SMU Name hitless OSPFV3 AA06838 asr9k-px-4.2.3.CSCud1647 hitless BUNDLE AA06806 asr9k-px-4.2.3.CSCud1647 hitless BUNDLE AA06806 asr9k-px-4.2.3.CSCud2989 needs reboot INFRASTRUCTURE AA06812 asr9k-px-4.2.3.CSCud3925 hitless MCAST AA06828 asr9k-px-4.2.3.CSCud4021 hitless MCAST AA06880 asr9k-px-4.2.3.CSCud4107 issu/reload INFRASTRUCTURE AA06883 asr9k-px-4.2.3.CSCud4107 needs reboot QOS AA06891 asr9k-px-4.2.3.CSCud5409 needs reboot QOS AA06911 asr9k-px-4.2.3.CSCud5407
IOS XR Software Maintenance Upgrades (SMU) Bundles IOS XR Software Manager IOS XR XML Perl Scripting Toolkit and Data Objects IOS XR XML Schemas	Image: Constraint of the second se	AAU6909 asr9k-px-4.2.3.C5Cud9124 AA06927 asr9k-px-4.2.3.C5Cud9841 + isco.com
Login Info Add New Device Group root sj20lab-as1(siva) root sj20lab-as1(siva) Connection Category 172.27.150.58 Connection Type 172.27.144.174 Node IP Address sj20lab-as1(siva) Node IP Address sj20lab-as1(siva) sj20lab-as1(siva)	Mere to search Total: 6 SMUs Display Critera: All Active Packages SMUs Only Active Packages asr9k-px-4.2.3.CSCud98419-1.0.0 asr9k-px-4.2.3.CSCud9892-1.0.0 asr9k-px-4.2.3.CSCud29892-1.0.0 asr9k-px-4.2.3.CSCud29899-1.0.0 asr9k-px-4.2.3.CSCud7356-1.0.0	Supersoded-SMUs : 2
sj20lab-as1(Other) 172.27.147.20 sj20lab-as1(Swami) ▼ Login	Clear	Conformance Report
BRKARC-2003 © 2014 Cisco and/or its affiliates. All rights r	eserved. Cisco Public 55	Ciscol(VC)

Cisco Virtualization Technologies

Platform Virtualization

Cisco Modeling Lab (CML)

IOS-XRv

Cisco IOS XRv supported since 5.1.1

- Control plane only. Virtual data plane on the roadmap
- Initial application: BGP router reflect, Cisco Modeling Lab (CML)

- Release Notes:

http://www.cisco.com/en/US/partner/docs/ios_xr_sw/iosxr_r5.1/general/release/notes/reln-xrv.html

- Demo Image: <u>https://upload.cisco.com/cgi-bin/swc/fileexg/main.cgi?CONTYPES=Cisco-IOS-XRv</u>
- Installation Guide: <u>http://www.cisco.com/en/US/docs/ios_xr_sw/ios_xrv/install_config/b_xrvr_432.html</u>
- Quick Guide to ESXi: https://supportforums.cisco.com/docs/DOC-39939

Cisco Modeling Lab (CML)

- CML is a multi-purpose network virtualization platform that provides ease-of-use to customers wanting to build, configure and Test new or existing network topologies. IOS XRv Virtual XR platform is now available
- http://www.cisco.com/en/US/docs/ios xr sw/ios xrv/install config/b xrvr 432 chapter 01.html

ASR 9000 Software System Architecture (2) Control Plane and Forwarding Plane

ASR9000 Fully Distributed Control Plane

Local Packet Transport Services (LPTS)

"The" Control Plane Protection

- LPTS enables applications to reside on any or all RPs, DRPs, or LCs
 - Active/Standby, Distributed Applications, Local processing
- IFIB forwarding is based on matching control plane flows
 - Built in dynamic "firewall" for control plane traffic
- LPTS is transparent and automatic

Layer 3 Control Plane Overview

IOS-XR Two-Stage Forwarding Overview

Scalable and Predictable

Uniform packet flow for simplicity and predictable performance

L3 Unicast Forwarding Packet Flow (Simplified) Example

L3 Multicast Software Architecture – MRIB/MFIB

Multicast Replication Model Overview 2-Stage Replication

- Multicast Replication in ASR9k is like an SSM tree
- 2-stage replication model:
 - Fabric to LC replication
 - Egress NP OIF replication
- ASR9k doesn't use inferior "binary tree" or "root uniary tree" replication model

Important ASR9k MFIB Data-Structures

- FGID = Fabric Group ID
 - 1. FGID Index points to (slotmask, fabric-channel-mask)
 - 2. Slotmask, fabric-channel-mask = simple bitmap
- MGID = Multicast Group ID (S,G) or (*,G)
- 4-bit RBH
 - 1. Used for multicast load-balancing chip-to-chip hashing
 - 2. Computed by ingress NP ucode using these packet fields:
 - 3. IP-SA, IP-DA, Src Port, Dst Port, Router ID
- FPOE = FGID + 4-bit RBH

FGID (Slotmask)

FGIDs: 10 Slot Chassis

Slot		Slot Mask	
Logical	Physical	Binary	Hex
LC7	9	100000000	0x0200
LC6	8	010000000	0x0100
LC5	7	001000000	0x0080
LC4	6	0001000000	0x0040
RSP0	5	0000100000	0x0020
RSP1	4	0000010000	0x0010
LC3	3	000001000	0x0008
LC2	2	000000100	0x0004
LC1	1	000000010	0x0002
LC0	0	000000001	0x0001

FGIDs: 6 Slot Chassis

a		
Phy Slot Number	Logical Slot	Cisco ASR 9000 Series
5	LC 3	Eages Eaces : 68665 68666
4	LC 2	Easted Easted : Easted (12) -
3	LC 1	
2	LC 0	
1	RSP 1	
0	RSP 0	

Slot		Slot Mask	
Logical	Physical	Binary	Hex
LC3	5	0000100000	0x0020
LC2	4	0000010000	0x0010
LC1	3	0000001000	0x0008
LC0	2	000000100	0x0004
RSP1	1	000000010	0x0002
RSP0	0	0000000001	0x0001

Target Linecards	FGID Value (10 Slot Chassis)
LC6	0x0100
LC1 + LC5	0x0002 0x0080 = 0x0082
LC0 + LC3 + LC7	0x0001 0x0008 0x0200 = 0x0209

BRKARC-2003

© 2014 Cisco and/or its amiliates. All rights reserved.

BRKARC-2003 © 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public 68

MGID Allocation in ASR9k

- A MGID is allocated per L2/L3/MPLS multicast route
- Typhoon LCs support 512k MGIDs per system which are allocated by the MGID server
- They are fully backward compatible to Trident (1st Gen) and SIP700 cards
- MGID space allocation is as follows:
 - 1. 0 (32k-1): Bridge domains in mixed LC system
 - 2. 32k (64k-1): IP and L2 multicast in mixed LC system
 - 3. 64k (128k-1): Reserved for future Bridge domain expansion on Typhoon LCs
 - 4. 128k (512k-1): IP and L2 multicast on Typhoon LCs

Multicast Replication Model Overview Step 1

- Ingress NPU:
 - 1. MFIB (S,G) route lookup yields {FGID, MGID, Olist, 4-bit RBH} data-structures

4

2. Ingress NPU adds FGID, MGID, 4-bit RBH in fabric header to FIA

Multicast Replication Model Overview Step 2

- Ingress FIA:
 - 1. Load-balance multicast traffic from FIA to LC Fabric

Ciscolin/P

Multicast Replication Model Overview Step 3

- Ingress LC Fabric: •
 - Reads FPOE bits in the fabric header AND reads 3-bits of derived RBH 1.
 - It will load-balance MGID towards any of the 8 fabric channels 2.
 - Now it send traffic to central fabric over 1 of the fabric channels per MGID 3.
 - (Note: there are only upto 8 fabric-channel links to central fabrlc)

100GE

MAC/P

HY

100GE

MAC/P

HY

Ciscoliv/

G

RSP Fabric Replication to Egress LC Fabric:

- 1. Receives 1 copy from ingress LC
- 2. Reads fabric header FGID slotmask value to lookup the FPOE table to identify which fabric channel output ports to replicate to
- 3. Now it replicates 1 copy to egress LCs with multicast receivers

Ciscol

- Egress LC Fabric Replication to FIA:
 - 1. Egress LC fabric is connected to all the FIAs (ie. upto 6 FIAs in A9k-36x10G) card
 - 2. All MGIDs (ie. mroute) are mapped into 4k FPOE table entries in LC fabric
 - 3. Looks up FPOE index and replicate the packets mapped to egress FIAs with MGID receiver

74

Egress FIA Replication to Typhoon NPU

- 1. Egress FIA has 256k MGIDs (ie. mroutes), 1 MGID is allocated per mroute
- 2. Each MGID in the FIA is mapped to its local NPUs
- 3. Performs a 19-bit MGID lookup of incoming mcast packet from LC fabric
- 4. Replicates 1 copy to each Typhoon NPU with mroute receivers

Ciscol

Egress Typhoon NPU Multicast OIF Replication

- 1. Egress NPU performs L2/L3/MPLS multicast OIF replication (2nd stage lookup)
- 2. MGID lookup yields OIF count (ie. replication interface count)
- 3. When OIF count == 1, then NPU replicate all L2/L3/MPLS multicast traffic in 1st pass
- 4. When OIF count > 1, then NPU replicate all L2/L3/MPLS multicast traffic in 2nd pass
- 5. (S,G), (*,G)

Ciscol

L2 Service Framework: Cisco EVC

Most Flexible Carrier Ethernet Service Architecture: any service any port, any VLAN to any VLAN

BRKARC-2003

Flexible VLAN Tag Classification

RP/0/RSP0/CPU0:PE2-asr(config)#int gig 0/3/0/0.100 l2transport RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation ? default Packets unmatched by other service instances dot1ad IEEE 802.1ad VLAN-tagged packets dot1q IEEE 802.1Q VLAN-tagged packets untagged Packets with no explicit VLAN tag

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1q 10 comma comma exact Do not allow further inner tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1q 10 second-dot1q 100 ? comma comma exact Do not allow further inner tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1aq 10 second-dot1q 128-133 ?

comma comma

exact Do not allow further inner tags

Flexible VLAN Tag Rewrite

RP/0/RSP0/CPU0:PE2-asr(config)#int gig 0/0/0/4.100 l2transport

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag ?

pop Remove one or more tags

push Push one or more tags

translate Replace tags with other tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag pop ?

- 1 Remove outer tag only
- 2 Remove two outermost tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag push ? dot1ad Push a Dot1ad tag dot1q Push a Dot1Q tag RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag push dot1q 100 ? second-dot1q Push another Dot1Q tag symmetric All rewrites must be symmetric

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag translate ?

- 1-to-1 Replace the outermost tag with another tag
- 1-to-2 Replace the outermost tag with two tags
- 2-to-1 Replace the outermost two tags with one tag
- 2-to-2 Replace the outermost two tags with two other tags

Any VLAN to any VLAN: single or double tags, dot1q or dot1ad

L2VPN P2P

EFP configuration example

Interface gig 0/0/0/1.101 l2transport encapsulation dot1q 101 second 10 rewrite ingress pop 2 Symmetric

Interface gig 0/0/0/2.101 l2transport encapsulation dot1q 101 rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/3.101 I2transport encapsulation dot1q 102-105 rewrite ingress push dot1q 100 Symmetric

L2VPN P2P service configuration example l2vpn xconnect group cisco p2p service1 ← local connect interface gig 0/0/0/1.101 interface gig 0/0/0/2.101 interface gig 0/0/0/3.101 neighbor 1.1.1.1 pw-id 22 p2p service3 PW stitching neighbor 2.2.2.2 pw-id 100 neighbor 3.3.3.3 pw-id 101

Flexible Multipoint Bridging Architecture

* Not in 5.2.0

L2VPN Multi-Point (1): local bridging, vpls, h-vpls

EFP configuration example

Interface gig 0/0/0/1.101 l2transport encapsulation dot1q 101 rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/2.101 l2transport encapsulation dot1q 101 rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/3.101 l2transport encapsulation dot1q 102 rewrite ingress push dot1q 100 Symmetric l2vpn

L2VPN MP service configuration example

bridge group cisco bridge-domain domain1 ← local bridging Interface gig 0/0/0/1.101 Interface gig 0/0/0/2.101 Interface gig 0/0/0/3.101

bridge-domain domain2 ← vpls Interface gig 0/0/0/1.101 Interface gig 0/0/0/2.101 vfi cisco neighbor 192.0.0.1 pw-id 100 neighbor 192.0.0.2 pw-id 100

bridge-domain domain3 ← h-vpls neighbor 192.0.0.3 pw-id 100 ← spoke PW vfi cisco neighbor 192.0.0.1 pw-id 100 neighbor 192.0.0.2 pw-id 100

A Simple PBB-EVPN CLI Example

Please refer to session xxx for details:

PE1

```
interface Bundle-Ether1.777 l2transport
encapsulation dot1q 777
```

12vpn

```
bridge group gr1
bridge-domain bd1
interface Bundle-Ether1.777
pbb edge i-sid 260 core-bridge-domain core bd1
```

```
bridge group gr2
bridge-domain core_bd1
pbb core
evpn evi 1000
```

```
router bgp 64
address-family l2vpn evpn
!
neighbor <x.x.x.x>
remote-as 64
address-family l2vpn evpn
```


Default B-MAC SA Auto RT for EVI Auto RD for EVI

Auto RD for Segment Route

Configuration

VXLAN L3 Gateway CLI Example

RP/0/0/CPU0:r1(config) # interface nve 1
RP/0/0/CPU0:r1(config-if) # encapsulation vxlan
RP/0/0/CPU0:r1(config-if) # source-interface loopback 0
RP/0/0/CPU0:r1(config-if) # vni 65001-65010 mcast 239.1.1.1
RP/0/0/CPU0:r1(config-if) # vni 65011 mcast 239.1.1.2
! 1:1 or N:1 mapping between VNIs and vxlan multicast delivery group

RP/0/0/CPU0:r1(config)#l2vpn
RP/0/0/CPU0:r1(config-l2vpn)#bridge group customer1
RP/0/0/CPU0:r1(config-l2vpn-bg)#bridge-domain cu-l3vpn
RP/0/0/CPU0:r1(config-l2vpn-bg-bd)#member vni 65001
RP/0/0/CPU0:r1(config-l2vpn-bg-bd)#routed interface 101

RP/0/0/CPU0:r1(config)#interface BVI 101
RP/0/0/CPU0:r1(config-if)#ipv4 address 100.1.1.1/24
RP/0/0/CPU0:r1(config-if)#ipv6 address 100:1:1::1/96
! Can apply any existing features like QoS, ACL, Netflow, etc under BVI
interface

VXLAN L2 Gateway CLI Example

RP/0/0/CPU0:r1(config) # interface nve 1 RP/0/0/CPU0:r1(config-if) # encapsulation vxlan RP/0/0/CPU0:r1(config-if) # source-interface loopback 0 RP/0/0/CPU0:r1(config-if) # vni 65001-65010 mcast 239.1.1.1 RP/0/0/CPU0:r1(config-if) # vni 65011 mcast 239.1.1.2 ! 1:1 or N:1 mapping between VNIs and vxlan multicast delivery group

RP/0/0/CPU0:r1(config)#l2vpn
RP/0/0/CPU0:r1(config-l2vpn)#bridge group customer1
RP/0/0/CPU0:r1(config-l2vpn-bg)#bridge-domain cu-l2vpn
RP/0/0/CPU0:r1(config-l2vpn-bg-bd)#interface GigabitEthernet0/2/0/0.100
RP/0/0/CPU0:r1(config-l2vpn-bg-bd)#member vni 65001

RP/0/0/CPU0:r1(config)#interface GigabitEthernet0/2/0/0.100 l2transport RP/0/0/CPU0:r1(config-subif)#dot1q vlan 100

MAC Learning and Sync

1 NP learn MAC address in hardware (around 4M pps)

NP flood MAC notification (data plane) message to all other NPs in the system to sync up the MAC address system-wide. MAC notification and MAC sync are all done in hardware

LC1 CPU Data 3x10GE SFF packet FIA 3x10GE NP SFP + 3x10GE NP SFP + Fabric ASIC Switch FIA 3x10GE NP SFP + 3x10GE NP SFP + FIA 3x10GE NP SFP + 3x10GE NP SFP + FIA 3x10GE NP SFP +

Hardware based MAC learning: ~4Mpps/NP

Virtual Service Interface: PWHE Interface

- Unified MPLS end-to-end transport architecture
- Flexible service edge placement with virtual PWHE interface
 - L2 and L3 interface/sub-interface
 - Feature parity as regular L3 interface: QoS, ACL, Netflow, BFD, etc
 - CE-PE routing is over MPLS transport network. It doesn't need direct L3 link any more
- CE-PE virtual link is protected by the MPLS transport network

PWHE Configuration Examples

neighbor 192.0.0.2 pw-id 100

Cisc

ASR 9000 Software System Architecture (3) Queuing

53

System QoS Overview Port/LC QoS and Fabric QoS

End-to-End priority (P1,P2, 2xBest-effort) propagation Unicast VOQ and back pressure Unicast and Multicast separation

Ingress side of LC

Egress side of LC

Line Card QOS Overview (1)

- The user configure QoS policy using IOS XR MQC CLI
- QoS policy is applied to interface (physical, bundle or logical*), attachment points
 - Main Interface
 - MQC applied to a physical port will take effect for traffic that flows across all sub-interfaces on that physical port
 - ✓ will NOT coexist with MQC policy on sub-interface **
 - ✓ you can have either port-based or subinter-face based policy on a given physical port
 - L3 sub-interface
 - L2 sub-interface (EFP)
- QoS policy is programmed into hardware microcode and queue ASIC on the Line card NPU

- * Some logical interface could apply qos policy, for example PWHE and BVI
- ** it could have main interface level simple flat qos co-exist with sub-interface level H-QoS on ingress direction

Line Card QoS Overview (2)

Dedicated queue ASIC – **TM (traffic manager**) per each NP for the QoS function

-SE and –TR* LC version has different queue buffer/memory size, different number of queues

• High scale

-Up to 3 Million queues per system (with -SE linecard)

-Up to 2 Million policers per system (with -SE linecard

• Highly flexible: 4 layer hierarchy queuing/scheduling support

 –Four layer scheduling hierarchy →Port, Subscriber Group, Subscriber, Class

-Egress & Ingress, shaping and policing

- Three strict priority scheduling with priority propagation
- Flexible & granular classification, and marking –Full Layer 2, Full Layer 3/4 IPv4, IPv6

Typhoon

ТΜ

LC QoS Overview (3): 4-Level Hierarchy QoS

* Certain line card doesn't support ingress queuing

Hierarchy levels used are determined by how many nested levels a policy-map

subscriber level (L3) are

Internal QoS: End-to-End System Queuing

- 1. Input queue for NP packet process
- 2. Ingress queue on NP: service SLA
- 3. VoQ on ingress FIA: for egress LC congestion, when receive back pressure from egress LC
- 4. Egress queue on egress FIA: priority/scheduling to egress NP
- 5. Input queue for NP packet process. When queue build up, it will trigger back pressure to FIA
- 6. Egress queue on NP: link congestion and service SLA

- Queue 2, 3,4 (Ingress NP queue, VoQ, FIA egress queue) has 3 strict priority: P1, P2 and BE
- Queue 6 (Egress NP queue) has two options: 2PQ+BEs or 3PQ+BEs
- Queue 2 and 6 are user configurable, all others are not
- Queue 3 and 4 priority is determined by queue 2: packet classified at ingress NP queue will be put into same level of priority on queue 3 and 4 automatically

Internal QoS: Back Pressure and VoQ

- Egress NP congestion will trigger back pressure to egress FIA. When egress FIA queue cross certain threshold, it will trigger back pressure to switch fabric, then to the ingress FIA: packet put into VoQ
- Queue 3 and 4 are per egress 10G port or per VQI (see next slide)
- Each line card FIA has 1024x4 VoQs, and has 24x4 egress queue
- Each FIA egress queue shape to 13G per VQI. If more than 13G hit, FIA will trigger back pressure
- One port congestion won't head of line block other egress port: purple port won't block green port in the above example, since they go through different VoQs

P1 11

P2 111

BETT

CPU

P1 111

P2 111

BE TTT

PH

PH

Understand VQI and Internal Link Bandwidth

System Load Balancing – Unicast

BRKARC-2003

System Load Balancing – Multicast

Ingress packet FLOW information is used to create 32bits hashing for all kinds of load balancing used in the system

NP replicates over multiple outgoing interfaces 7. and load balance over link bundle member ports

ECMP and Bundle Load balancing

ECMP Load balancing

- A: IPv4 Unicast or IPv4 to MPLS (3)
- No or unknown Layer 4 protocol: IP SA, DA and Router ID
- UDP or TCP: IP SA, DA, Src Port, Dst Port and Router ID

B: IPv4 Multicast

- For (S,G): Source IP, Group IP, next-hop of RPF
- For (*,G): RP address, Group IP address, next-hop of RPF

C: MPLS to MPLS or MPLS to IPv4

- # of labels <= 4 : same as IPv4 unicast (if inner is IP based, EoMPLS, etherheader will follow: 4th label+RID)
- # of labels > 4 : 4th label and Router ID on Trident card, 5th label and Router ID on Typhoon card

Bundle Load balancing

- L3 bundle uses 5 tuple as "A" (eg IP enabled routed bundle interface)
- MPLS enabled bundle follows "C"
- L2 access bundle uses access S/D-MAC + RID, OR L3 if configured (under 12vpn)
- L2 access AC to PW over mpls enabled core facing bundle uses PW label (not FAT-PW label even if configured)
 - FAT PW label only useful for P/core routers

PW Load-balancing scenarios

MPLS vs IP Based loadbalancing

- When a labeled packet arrives on the interface.
- The ASR9000 advances a pointer for at max 4 labels.
- If the number of labels <=4 and the next nibble seen right after that label is
 - 4: default to IPv4 based balancing
 - 6: default to IPv6 based balancing
- This means that if you have a P router that has no knowledge about the MPLS service of the packet, that nibble can either mean the IP version (in MPLS/IP) or it can be the DMAC (in EoMPLS).
- RULE: If you have EoMPLS services AND macs are starting with a 4 or 6. You HAVE to use Control-Word
 - L2 MPLS MPLS 45... (ipv4) 0000 (CW) 4111.0000. 41-22-33 (mac)
- Control Word inserts additional zeros after the inner label showing the P nodes to go for label based balancing.
- In EoMPLS, the inner label is VC label. So LB per VC then. More granular spread for EoMPLS can be achieved with FAT PW (label based on FLOW inserted by the PE device who owns the service

GRE Tunnel Load Balancing Logic

Headend:

• Always uses loadBalancing on inner header with the 5-tuple for IP packet.

Transit Router:

- GRE+checksum (for IPv4 and IPv6 traffic) Loadbalancing on inner SIP/DIP.
- GRE + Keepalive (for IPv4 traffic) Loadbalancing on inner SIP/DIP.
- GRE + Sequence (for IPv4 and IPv6 traffic) Loadbalancing on outer SIP/DIP.
- GRE + MPLS Loadbalancing on outer SIP/DIP.
- GRE + Key (for IPv4 and IPv6 traffic) LoadBalancing on outer SIP/DIP in 431. R510 uses inner SIP/DIP.
- Outer header ipv4 mcast address Loadbalancing on outer SIP/DIP.

Loadbalancing ECMP vs UCMP and polarization

- Support for Equal cost and Unequal cost
- 32 ways for IGP paths
- 32 ways (Typhoon) for BGP (recursive paths) 8-way Trident
- 64 members per LAG
- Make sure you reduce recursiveness of routes as much as possible (static route misconfigurations...)
- All loadbalancing uses the same hash computation but looks at different bits from that hash.
- Use the hash shift knob to prevent polarization.
- Adj nodes compute the same hash, with little variety if the RID is close
 - This can result in north bound or south bound routing.
 - Hash shift makes the nodes look at complete different bits and provide more spread.
 - Trial and error... (4 way shift trident, 32 way typhoon, values of >5 on trident result in modulo)

1010101

Ε

XX0110101

Great references

- Understanding NP counters
 - <u>https://supportforums.cisco.com/docs/DOC-15552</u>
- Capturing packets in the ASR9000 forwarding path
 - https://supportforums.cisco.com/docs/DOC-29010
- Loadbalancing Architecture for the ASR9000
 - <u>https://supportforums.cisco.com/docs/DOC-26687</u>
- Understanding UCMP and ECMP
 - <u>https://supportforums.cisco.com/docs/DOC-32365</u>

ASR 9000 Advanced System Architecture (1) OpenFlow

53

OpenFlow Support on ASR9K

- HW requirement
 - All chassis type (nV cluster support is on roadmap)
 - Typhoon line card only, Trident line card and SIP-700 are not supported
- SW requirement
 - 5.1.1 early trial, 5.1.2 official support
 - Require asr9k-k9sec-px.pie (required for TLS encryption of the OF channel, which is turned on by default)
- Supported interface types
 - Physical interfaces/sub-int such as Gig/10G/40G/100G
 - Bundle interfaces/sub-int
 - Logical interface: BVI, PWHE interface/sub-int
 - Not supported: satellite interface, GRE, TE tunnel
- Hybrid Mode operation
 - OF switch function co-exist with existing ASR9K router functions
 - For example, some sub-interfaces can be part of the OF switch, while other sub-interfaces (on the same port) could be regular L2/L3 sub-interfaces

BRKARC-2003 © 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public

OpenFlow Configuration Examples

L2 or L2 with PWHE OF switch example:

An L2 only OpenFlow switch is attached to a bridge-domain as follows: openflow switch 3 pipeline 129 bridge-group SDN-2 bridge-domain OF-2 controller 100.3.0.1 port 6634 max-backoff 8 probe-interval 5 pps 0 burst 0

L3 OF switch, global or vrf example:

L3_V4 switch can be attached either to a VRF or directly to layer 3 interfaces under global VRF. In case of VRF, all the interfaces in that VRF become part of the OpenFlow switch.

openflow switch 1 pipeline 131

vrf of-test controller 100.3.0.1 port 6634 max-backoff 8 probe-interval 5 pps 0 burst 0

openflow switch 5 pipeline 132

controller 100.3.0.1 port 6633 max-backoff 8 probe-interval 5 pps 0 burst 0 interface GigabitEthernet0/7/0/1.8 interface GigabitEthernet0/7/0/1.9

Show/debug CLI Examples

Openflow show commands

show openflow switch <> show openflow switch <> controllers Show openflow switch <> ports Show openflow switch stats Show openflow switch flows Show openflow interface switch <> show openflow hardware capabilities pipeline <> show table-cap table-type <>

Debug commands for Open flow Agent

debug openflow switch ovs module ofproto level debug debug openflow switch ovs module ofproto-plif level debug debug openflow switch ovs module plif-onep level debug debug openflow switch ovs module plif-onep-util level debug debug openflow switch ovs module plif-onep-wt level debug

ASR 9000 Advanced System Architecture (2) nV (network virtualization) Satellite and Cluster

What's the story behind the nV?

Example 1: Complex, mesh network topologies, multiple paths, need network protocols

Access Service Edge

CE

Example 2: Ring topology, traffic direction: East or West, do I still need those network protocols?

Example 3:

Even a simpler case: P2P topology. Why it need to run any protocol on the access device? Why it even need any forwarding table like FIB or MAC?

Satellite is network virtualization solution which can dramatically simplify network for certain network topologies and traffic patterns

ASR 9000 nV Satellite Overview

Zero Touch, Fully Secure

- Satellite and ASR 9000 Host run satellite protocol for auto-discovery, provisioning and management
- Satellite and Host could be co-located or in different location. There is no distance limitation between satellite and Host
- The connection between satellite and host is called "nv fabric link", which could be L1 or over L2 virtual circuit (future)

Satellite access port have feature parity with ASR9K local ports \rightarrow it works/feels just as local port

Satellite Hardware – ASR 9000v Overview

Power Feeds

- Redundant -48vDC Power Feeds
- Single AC power feed
- Max Power 210W
- Nominal Power 159 W

1 RU ANSI & ETSI Compliant

Field Replaceable Fan Tray

- Redundant Fans
- ToD/PSS Output
- Bits Out

44x10/100/1000 Mbps Pluggables

- Full Line Rate Packet Processing and Traffic Management
- Copper and fiber SFP optics
- Speed/duplex auto negotiation

4x10G SFP+

- Initially used as Fabric Ports ONLY (could be used as access port in the future)
- Copper and fiber SFP+ optics
 Industrial Temp Rated
 - -40C to +65C Operational Temperature
 - -40C to +70C Storage Temperature

Satellite Hardware – ASR901 Overview

- 1) Not supported/used when operating in nV Satellite Mode
- 2) Used for low level debugging only

Satellite Hardware – ASR903 Overview

Router Switch Processor

Currently only 1x RSP supported

Six I/O Modules

- 1 port 10GE Module (XFP) nV fabric links only
- 8 port 1GE Module (SFP) access ports only
- 8 port 1GE Module (RJ45) access ports only

2x Power Modules

- DC PEM, 1x -24 or -48 VDC
- AC PEM, 1x 115..230 VAC

Ciscolin/PI

Fan Module

Satellite – Host Control Plane

Satellite discovery and control protocol

- Discovery Phase
 - A CDP-like link-level protocol that discovers satellites and maintains a periodic heartbeat
 - Heartbeat sent once every second, used to detect satellite or fabric link failures. CFM based fast failure detection plan for future release
- Control Phase
 - Used for Inter-Process Communication between Host and Satellite
 - Cisco proprietary protocol over TCP socket, it could get standardized in the future
 - Get/Set style messages to provision the satellites and also to retrieve notifications from the satellite

Satellite – Host Data Plane Encapsulation

On the Satellite

- Satellite receives Ethernet frame on its access port
- Special nV-tag is added
- Local xconnect between access and fabric port (no MAC learning !)
- Packet is put into fabric port egress queue and transmitted out toward host

On the Host

- Host receives the packet on its satellite fabric port
- **Checks the nV tag**, then maps the frame to the corresponding satellite virtual access port
- Packet Processing identical to local ports (L2/L3 features, qos, ACL, etc all done in the NPU)
- Packet is forwarded out of a local, or satellite fabric port to same or different satellite

Initial Satellite Configuration

nv

interface TenGigE 0/2/0/2 ← configure satellite fabric port
nv
satellite-fabric-link satellite 101
remote-ports ← satellite to fabric port mapping
GigabitEthernet 0/0/0-9

Satellite Port Configuration Comparison to local port configuration

Satellite Deployment Models ASR9000v Example

Mode 1: Static pinning No fabric port redundancy

- Access ports are mapped to a single Fabric Link
- Fabric Link failure does bring Access Port down

Mode 2: Fabric bundle Fabric port redundancy

- Fabric links are forming a Link-Bundle
- Access port traffic is "hashed" across Bundle Members
- Fabric link failure keeps all Access Ports up, rehashing of Traffic

Satellite Monitoring and Troubleshooting

- Normal operation, like show CLIs are done on the Host directly, for example
 - Satellite inventory reporting, environmental monitoring
 - Interface counts, stats
 - SNMP MIB
 - NMS support, Cisco PRIME
- Low level debug could still be done directly on the satellite device
 - User can telnet into satellite via out-of-band management console, or in-band from Host, and run regular show/debug CLIs

Satellite Software Management

Everything controlled from the Host

```
RP/0/RSP0/CPU0:ios#show install active
```

```
Node 0/RSP0/CPU0 [RP] [SDR: Owner]
Boot Device: disk0:
Boot Image: /disk0/asr9k-os-mbi-4.3.0/0x100000/mbiasr9k-rp.vm
Active Packages:
    disk0:asr9k-mini-px-4.3.0
    disk0:asr9k-mpls-px-4.3.0
    disk0:asr9k-9000v-nV-px-4.3.0
    disk0:asr9k-asr901-nV-px-4.3.0
    disk0:asr9k-asr903-nV-px-4.3.0
    disk0:asr9k-fpd-px-4.3.0
```

RP/0/RSP0/CPU0:R1#install nv satellite ?
<100-65534> Satellite ID
all All active satellites

```
RP/0/RSP0/CPU0:R1#install nv satellite 100 ?
```

activate Install a new image on the satellite, transferring first if necessary transfer Transfer a new image to the satellite, do not install yet

RP/0/RSP0/CPU0:R1#install nv satellite 100 active

Satellite Plug and Play 9000v: Configure, Install and Ready-to-Go

Critical Error LED ON \rightarrow bad hardware, RMA

- Major Error LED ON \rightarrow Unable to connect to ASR9K host
 - Missing the initial satellite configuration?
 - L1 issue, at least one of the uplink port light green?
 - Security check (optional), is the satellite SN# correct?

Status light green \rightarrow ready to go, satellite is fully managed by Host

nV Satellite Evolution

124

ASR9000 nV Edge Overview

Single control plane, single management plane, fully distributed data plane across two physical chassis → one virtual nV system

nV Edge Architecture Details

- Control plane connection: Active RSP and standby RSP are on the different chassis, they communicate via external EOBC links
- Data plane connection: bundle regular data links into special "nV fabric link" to simulate switch fabric function between two physical chassis for data packet
- Flexible co-located or different location deployment (upto 10msec latency)

nV Edge Configuration

Configure nV Edge globally

```
nv
edge-system
serial FOX1437GC1R rack 1
serial FOX1439G63M rack 0
fox1439G63M rack 0
```

 Configure the inter-chassis fabric(data plane) links interface TenGigE1/2/0/0 nv edge interface interface TenGigE0/2/0/0 nv edge interface

After this configuration, rack 1 will reload and then join cluster after it boot up Now you successfully convert two standalone ASR 9000 into one ASR 9000 nV Edge As simple as this !!!

nV Edge Interface Numbering

• Interfaces on 1st Chassis (Rack 0)

GigabitEthernet <mark>0</mark> /1/1/0 GigabitEthernet <mark>0</mark> /1/1/1.1	unassigned unassigned	Up Shutdown	Up Down	
 Interface on 2nd Chassis (Rack 1) 				

GigabitEthernet <mark>1</mark> /1/1/0	unassigned	Up	Up
GigabitEthernet 1 /1/1/1.22	unassigned	Shutdown	Down

•Gilpterfaces on a Satellite connected to the nVuEdge Virtual System p GigabitEthernet100/1/1/1.123 unassigned Up Up

nVSSU (nV System Software Upgrade)

- Existing nV cluster image upgrade: require reloading of both of the racks in the nV system
- nVSSU: a method of minimizing traffic downtime while upgrading a cluster system
 - Support "Any-to-Any" Release upgrade
 - Rack-by-Rack fully reload, so fully support XR Architecture releases, FPD upgrade, and Kernel upgrade
 - Traffic Outage estimated* < 1 sec. Topology loss < 5 min.
 - Traffic protection is via network switching
- Upgrade Orchestration is performed off-router via a set of Python scripts
- Feature roadmap:
 - Limited support in IOS-XR 5.2.2 release. Generic support will be in later release

* May subject to change depends on the scale and feature set

nV, XRv, OF, VXLAN and a lot more ...

References

- <u>ASR9000/XR Feature Order of operation</u>
- <u>ASR9000/XR Frequency Synchronization</u>
- ASR9000/XR: Understanding SNMP and troubleshooting
- Cisco BGP Dynamic Route Leaking feature Interaction with Juniper
- <u>ASR9000/XR: Cluster nV-Edge guide</u>
- Using COA, Change of Authorization for Access and BNG platforms
- <u>ASR9000/XR: Local Packet Transport Services (LPTS) CoPP</u>
- ASR9000/XR: How to capture dropped or lost packets
- ASR9000/XR Understanding Turboboot and initial System bring up
- ASR9000/XR: The concept of a SMU and managing them
- ASR9000/XR Using MST-AG (MST Access Gateway), MST and VPLS
- ASR9000/XR: Loadbalancing architecture and characteristics
- ASR9000/XR Netflow Architecture and overview
- ASR9000 Understanding the BNG configuration (a walkthrough)
- ASR9000/XR NP counters explained for up to XR4.2.1
- <u>ASR9000/XR Understanding Route scale</u>
- ASR9000/XR Understanding DHCP relay and forwarding broadcasts
- ASR9000/XR: BNG deployment guide

References

- ASR9000/XR: Understanding and using RPL (Route Policy Language)
- ASR9000/XR What is the difference between the -p- and -px- files ?
- ASR9000/XR: Migrating from IOS to IOS-XR a starting guide
- ASR9000 Monitoring Power Supply Information via SNMP
- ASR9000 BNG Training guide setting up PPPoE and IPoE sessions
- ASR9000 BNG debugging PPPoE sessions
- ASR9000/XR : Drops for unrecognized upper-level protocol error
- ASR9000/XR : Understanding ethernet filter strict
- ASR9000/XR Flexible VLAN matching, EVC, VLAN-Tag rewriting, IRB/BVI and defining L2 services
- ASR9000/XR: How to use Port Spanning or Port Mirroring
- ASR9000/XR Using Task groups and understanding Priv levels and authorization
- ASR9000/XR: How to reset a lost password (password recovery on IOS-XR)
- ASR9000/XR: How is CDP handled in L2 and L3 scenarios
- ASR9000/XR : Understanding SSRP Session State Redundancy Protocol for IC-SSO
- ASR9000/XR: Understanding MTU calculations
- ASR9000/XR: Troubleshooting packet drops and understanding NP drop counters
- Using Embedded Event Manager (EEM) in IOS-XR for the ASR9000 to simulate ECMP "min-links"
- XR: ASR9000 MST interop with IOS/7600: VLAN pruning

Complete Your Online Session Evaluation

- Give us your feedback and you could win fabulous prizes. Winners announced daily.
- Complete your session evaluation through the Cisco Live mobile app or visit one of the interactive kiosks located throughout the convention center.

Don't forget: Cisco Live sessions will be available for viewing on-demand after the event at CiscoLive.com/Online

Thank you.

111

10.00

