Cyclades-TS Installation Manual
Version 2.4 – October 2001
Copyright (C) Cyclades Corporation, 2001

We believe the information in this manual is accurate and reliable. However, we assume no responsibility, financial or otherwise, for any consequences of the use of this product or Installation Manual.

This manual is published by Cyclades Corporation, which reserves the right to make improvements or changes in the products described in this manual as well as to revise this publication at any time and without notice to any person of such revision or change. The operating systems covered in this manual are v1.1.2 and v1.3.0

All brand and product names mentioned in this publication are trademarks or registered trademarks of their respective holders.

FCC Warning Statement:
The Cyclades-TS has been tested and found to comply with the limits for Class A digital devices, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the Installation Manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user is required to correct the problem at his or her own expense.

Canadian DOC Notice:
The Cyclades-TS does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le Cyclades-TS n’émete pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la classe A prescrites dans le règlement sur le brouillage radioélectrique edicté par le Ministère des Communications du Canada.
Table of Contents

CHAPTER 1 HOW TO USE THIS MANUAL .. 5
CHAPTER 2 WHAT IS IN THE BOX .. 6
CHAPTER 3 SUMMARY OF THE CONFIGURATION PROCESS ... 11
CHAPTER 4 CONFIGURATION ... 13
 STEP ONE .. 13
 STEP TWO .. 14
 STEP THREE - CONSOLE SERVER .. 16
 STEP THREE - TERMINAL SERVER .. 23
 STEP THREE - REMOTE ACCESS SERVER .. 28
 STEP FOUR - FOR ALL PROFILES ... 34
 Clustering ... 35
CHAPTER 5 UPGRADES AND TROUBLESHOOTING ... 40
 Upgrades .. 40
 Troubleshooting ... 40
 Hardware Test ... 42
 Single User Mode ... 44
APPENDIX A INFORMATION FOR USERS NOT FAMILIAR WITH LINUX .. 46
 Users and Passwords .. 46
 Linux File Structure ... 46
CHAPTER 1 HOW TO USE THIS MANUAL

This manual assumes that the reader understands networking basics and is familiar with the terms and concepts used in Local and Wide Area Networking. The Cyclades-TS is a Linux-based terminal server, which gives it great flexibility. It runs an embedded version of the Linux operating system and Unix and Linux users will find the configuration process very familiar. On the other hand, users not familiar with Unix will have a steeper learning curve, but it is not necessary to be a Unix expert.

Configuration of the equipment is done by editing a few plain-text files (commented sample files for the principal profiles are provided in appendix C), and then updating the versions of the files in the Cyclades-TS. The files can be edited in the Cyclades-TS using the vi editor provided, or in another computer with the environment and text editor of your choice. Unix user or not, we strongly recommend that you follow the steps in this installation manual before jumping in.

This manual should be read in the order written, with exceptions given in the text.

Chapter 2 - What is in the Box - explains how the Cyclades-TS should be connected and what each cable is used for.
Chapter 3 - Summary of the Configuration Process - provides a brief roadmap of the Cyclades-TS configuration
Chapter 4 - Configuration - describes the basic configuration process to get the Cyclades-TS up and running for the most common uses.
Chapter 5 - Troubleshooting - provides solutions and test procedures for typical problems.
Appendix A - Linux Information - Information for those who are new to Linux/Unix.
Appendix B - Hardware Specifications - Pinout diagrams for cables.
Appendix C - Pslave.conf Sample Files - Example files for 3 profiles and the master file.
Appendix D - Customization - Instructions for those who wish to create their own applications.
Appendix E - The Web Configuration Manager - explains how to configure the TS with a browser.
CHAPTER 2 WHAT IS IN THE BOX

The Cyclades-TS is a line of console access and terminal servers. There are several models with differing numbers of serial ports. The following figures show the main units and accessories included in each package and how cables should be connected. The loop-back connector is provided for convenience in case hardware tests are necessary. The RJ-45M - DB-9 F Crossover cable and the RJ-45M - RJ-45 Sun Netra Crossover cable (not shown in the figures) are also included with each model.

FIGURE 2.1 CYCLADES-TS3000 AND CABLES
FIGURE 2.2 CYCLADES-TS2000 AND CABLES
FIGURE 2.3 CYCLADES-TS1000 AND CABLES
FIGURE 2.4 CYCLADES-TS800 AND CABLES
FIGURE 2.5 CYCLADES-TS400 AND CABLES
CHAPTER 3 SUMMARY OF THE CONFIGURATION PROCESS

The Cyclades-TS can be used as a:

• console server,
• terminal server,
• remote access server.

A detailed description of each of these profiles is provided in the next chapter. The Cyclades-TS’s operating system is embedded Linux. Even if you are a Unix user and find the tools and files familiar, do not configure this product as you would configure a regular Linux server.

You do not need to be a Unix user to configure the Cyclades-TS. Additional information about the files and tools needed for configuration is provided in appendix A.

The basic configuration steps are:

A. Connecting the Cyclades-TS to the network and other devices. Consult Chapter 2, What is in the Box, for questions on which cable should be used for which device.

B. Connect a PC or terminal to the Cyclades-TS via the console port and login.

C. Modify the Linux files
 /etc/hostname
 /etc/hosts
 /etc/resolv.conf
 /etc/network/st_routes
 to let the Cyclades-TS know about its local environment

D. Configure the boot parameters using the script bootconf
E. Edit the pslave.conf file. This is the main configuration file that concentrates most product parameters and defines the functionality of the Cyclades-TS. The modifications made to this file will depend on the profile.

F. Activate the changes.

G. Test the configuration to make sure the ports have been set up properly.

H. Save the changes and restart the server application.

Full details on each step listed above and how to perform them are provided in the next chapter. Make sure to always complete ALL the steps for your application before testing or switching to another profile.
CHAPTER 4 CONFIGURATION
This chapter guides you step by step through the configuration of the Cyclades-TS for the three principal applications:

1. Console Server,
2. Terminal Server, and

Many steps are common to both, so please read the entire chapter before beginning.

STEP ONE
Connect a PC or terminal to the Cyclades-TS using the console cable. If using a PC, HyperTerminal can be used in the Windows operating system or Kermit in the Unix operating system. The terminal parameters should be set as follows:

- Serial Speed: 9600 bps
- Data Length: 8 bits
- Parity: None
- Stop Bits: 1 stop bit
- Flow Control: Hardware flow control or none
- Ansi emulation (Note: if your terminal does not have ansi emulation, select vt100; then, on the TS, log in as root and switch to vt100 by typing “TERM=vt100;export TERM”)

When the Cyclades-TS boots properly, a login banner will appear.

Log in as root (there is no password). A password should be created as soon as possible. The Cyclades-TS runs Linux, a Unix-like operating system, and those familiar with the Unix operating system will feel quite at home. A description of the Linux file system and basic commands is given in the Linux appendix at the end of this manual.
STEP TWO
In this step, four Linux files must be modified to identify the TS1000 and its neighbors. Then, the boot parameters are configured. The operating system provides the vi editor, which is described in the Linux appendix for the uninitiated. The first file is /etc/hostname. The only entry should be the hostname of the Cyclades-TS. An example is shown in Figure 4.1.

```
TS1000
```

FIGURE 4.1 CONTENTS OF THE /ETC/HOSTNAME FILE

The second file is /etc/hosts. It should contain the IP address for the Ethernet interface and the same hostname entered in the /etc/hostname file. It may also contain IP addresses and host names for other hosts in the network.

```
200.200.200.1   TS1000
200.200.200.2   RadiusServer
127.0.0.1       localhost
```

FIGURE 4.2 CONTENTS OF THE /ETC/HOSTS FILE

The third file that must be modified is /etc/resolv.conf. It must contain the domain name and nameserver information for the network.

```
domain        mycompany.com
nameserver    200.200.200.2
```

FIGURE 4.3 CONTENTS OF THE /ETC/RESOLV.CONF FILE

The fourth file defines static routes and is called /etc/network/st_routes. In the console server example in Figure 4.5, the PR1000 is the gateway router and thus its IP address is configured in this file to be the default gateway. Other static routes are also configured in this file.
route add default gw 200.200.200.5

FIGURE 4.4 CONTENTS OF THE /ETC/NETWORK/ST_ROUTES FILE

Now, use the bootconf utility to configure the boot parameters. The console speed parameter should be changed if the terminal used as a console requires a different speed. The option to skip the flash test speeds up the boot process. The last option determines the operational mode of the Ethernet connection.

Type bootconf on the command line. The script will first ask if you want to return all parameters to their default values. If you respond No, it will ask you to enter parameter values one by one:

- MAC address assigned to Ethernet [00:60:2e:00:0e:23]
- IP address assigned to Ethernet interface [209.81.55.79]
- Watchdog timer ((A)ctive or (I)nactive) [A]
- TSLinux boot from ((F)lash or (N)etwork) [N]
- Boot type ((B)ootp,(T)ftp or Bot(H)) [T]
- Boot File Name [zvmppcts.eas]
- Server’s IP address [209.81.55.126]
- Console speed [9600]
- (P)erform or (S)kip Flash test [S]
- (S)kip, (Q)uick or (F)ull RAM test [S]
- Fast Ethernet ((A)uto Neg, (1)00 BtH, 100 Bt(F), 10 Bt(H)) [A]

after modifying these parameters, the script will ask:

Do you confirm these changes in flash ((Y)es, (N)o (Q)uit) [N] :

- Y = changes are saved to flash
- N = the parameters are presented again
- Q = the script quits without saving any changes made

STEP THREE
This is where the configuration for the three profiles - Console Server, Terminal Server and Remote Access Server diverge. Follow step three for the appropriate profile.
STEP THREE - CONSOLE SERVER

A console server application is shown in Figure 4.5.

This application allows a user to access a server connected to the Cyclades-TS through its serial console port from a workstation on the LAN or WAN. A server console is opened on the workstation. The authentication is usually performed by a Radius server and either telnet or ssh (a secure shell session) can be used. See the Linux appendix for more information about ssh.
The fifth file is specific to the Cyclades-TS and a sample file with comments is supplied in the Linux file system. It is called /etc/portslave/pslave.conf. A listing of the pslave.conf file with all possible parameters, as well as the files used to create the three applications in this chapter, is provided in Appendix C. There are three basic types of parameters: conf.* parameters are global or apply to the Ethernet interface; all.* parameters are used to set default parameters for all ports, and s#.* parameters change the default port parameters for individual ports. An all.* parameter can be overridden by a s#.* parameter appearing later in the pslave.conf file (or vice-versa). A brief description of each parameter used for the console server profile is given in Figures 4.6-4.7.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>conf.eth_ip</td>
<td>The IP address of the Ethernet interface. This parameter, along with the next two, is used by the cy_ras program to OVERWRITE the file /etc/network/ifcfg_eth0 as soon as the command "signal_ras HUP" is executed. The file /etc/network/ifcfg_eth0 should not be edited by the user unless the cy_ras application is not going to be used.</td>
<td>200.200.200.1</td>
</tr>
<tr>
<td>conf.eth_mask</td>
<td>The mask for the Ethernet network.</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>conf.eth_mtu</td>
<td>The Maximum Transmission Unit size, which determines whether or not packets should be broken up.</td>
<td>1500</td>
</tr>
<tr>
<td>conf.nfs_data_buffering</td>
<td>Remote Network File System where data buffering will be written instead of the default directory '/var/run'. The directory tree to which the file will be written must be NFS-mounted. If data buffering is turned on for port 1, for example, the data will be stored in the file ttyS1.data in the directory and server indicated by this variable. The remote host must have NFS installed and the administrator must create, export and allow reading/writing to this directory. The size of this file is not limited by the value of the parameter s1.data_buffering, though the value cannot be zero since a zero value turns off data buffering.</td>
<td>commented</td>
</tr>
<tr>
<td>conf.lockdir</td>
<td>The lock directory, which is /var/lock for the Cyclades-TS. It should not be changed unless the user decides to customize the operating system.</td>
<td>/var/lock</td>
</tr>
</tbody>
</table>
Parameter Description Value for This Example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>conf.syslog</td>
<td>The IP address of a remote syslog daemon can be provided here, if desired.</td>
<td>200.200.200.2</td>
</tr>
<tr>
<td>conf.facility</td>
<td>This value (0-7) is sent to the syslog server (the TS is a syslog client) to indicate in which file the syslog messages sent by portslave should be stored. The file /etc/syslog.conf on the syslog server contains a mapping between facility numbers and server log files.</td>
<td>7</td>
</tr>
<tr>
<td>conf.DB_facility</td>
<td>This value (0-7) is sent to the syslog server (the TS is a syslog client) to indicate in which file the syslog messages sent by the data buffering feature should be stored. See description for conf.facility.</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 4.6 CONSOLE SERVER PSLAVE.CONF GLOBAL PARAMETERS (CONT.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value in Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.syslog_level</td>
<td>This variable determines which syslog messages will be sent to the syslog server configured in the conf.syslog parameter. A value of 0 suppresses all but emergency messages while values between 1 and 7 send progressively more types of messages for each increment. This value (as for all "all." parameters) can later be overridden for individual ports using the s<port number>.syslog_level parameter.</td>
<td>4</td>
</tr>
<tr>
<td>all.console_level</td>
<td>This variable determines which syslog messages will be sent to the Cyclades-TS console connected through the console interface. See the previous parameter for a description of possible values.</td>
<td>4</td>
</tr>
<tr>
<td>all.speed</td>
<td>The speed for all ports.</td>
<td>9600</td>
</tr>
<tr>
<td>all.datasize</td>
<td>The data size for all ports.</td>
<td>8</td>
</tr>
<tr>
<td>all.stopbits</td>
<td>The number of stop bits for all ports</td>
<td>1</td>
</tr>
<tr>
<td>all.parity</td>
<td>The parity for all ports.</td>
<td>none</td>
</tr>
</tbody>
</table>

FIGURE 4.7 CONSOLE SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.authtype</td>
<td>There are several authentication type options: local (authentication is performed using the <code>/etc/passwd</code> file), radius (authentication is performed using a Radius authentication server), none, local/radius (authentication is performed locally first, switching to Radius if unsuccessful), radius/local (the opposite of the previous option) and RadiusDownLocal (local authentication is tried only when the Radius server is down). Note that this parameter controls the authentication required by the Cyclades-TS. The authentication required by the device to which the user is connecting is controlled separately.</td>
<td>radius</td>
</tr>
<tr>
<td>all.authhost1</td>
<td>This address indicates the location of the Radius authentication server and is only necessary if this option is chosen in the previous parameter. A second Radius authentication server can be configured with the parameter all.authhost2.</td>
<td>200.200.200.2</td>
</tr>
<tr>
<td>all.accthost1</td>
<td>This address indicates the location of the Radius accounting server, which can be used to track how long users are connected after being authorized by the authentication server. Its use is optional.</td>
<td>200.200.200.2</td>
</tr>
<tr>
<td>all.radtimeout</td>
<td>This is the timeout (in seconds) for a radius authentication query. The first server (authhost1) is tried "radretries" times, and then the second (if configured) is contacted "radretries" times. If the second also fails to respond, Radius authentication fails.</td>
<td>3</td>
</tr>
<tr>
<td>all.radretries</td>
<td>Defines the number of times each Radius server is tried before another is contacted. The default, if not configured, is 5.</td>
<td>5</td>
</tr>
<tr>
<td>all.secret</td>
<td>This is the shared secret necessary for communication between the Cyclades-TS and the Radius servers.</td>
<td>cyclades</td>
</tr>
</tbody>
</table>

FIGURE 4.7 CONSOLE SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS(CONT.)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.ipno</td>
<td>This is the default IP address of the Cyclades-TS's serial ports. The "+" indicates that the first port should be addressed as 192.168.1.101 and the following ports should have consecutive values. Any host can access a port using its IP address as long as a path to the address exists in the host's routing table.</td>
<td>192.168.1.101+</td>
</tr>
<tr>
<td>all.issue</td>
<td>This text determines the format of the login banner that is issued when a connection is made to the Cyclades-TS. \n represents a new line and \r represents a carriage return.</td>
<td><code>\n\n\nTSLINUX - Portslave Internet Services\n\n\nWelcome to terminal server %h port S%p \n\nCustomer Support: 510-770-9727\n\n\nwww.cyclades.com/\n\n</code></td>
</tr>
<tr>
<td>all.prompt</td>
<td>This text defines the format of the login prompt. Expansion characters, listed in Appendix C, can be used here.</td>
<td>%h login:</td>
</tr>
<tr>
<td>all.flow</td>
<td>This sets the flow control to hardware, software, or none.</td>
<td>hard</td>
</tr>
<tr>
<td>all.poll_interval</td>
<td>When not set to zero, this parameter sets the wait for a TCP connection keep-alive timer. If no traffic passes through the Cyclades-TS for this period of time, the Cyclades-TS will send a modem status message to the remote device to see if the connection is still up.</td>
<td>0</td>
</tr>
<tr>
<td>all.socket_port</td>
<td>This defines an alternative labeling system for the Cyclades-TS ports. The '+' after the numerical value causes the interfaces to be numbered consecutively. In this example, interface 1 is assigned the port value 7001, interface 2 is assigned the port value 7002, etc.</td>
<td>7001+</td>
</tr>
<tr>
<td>all.protocol</td>
<td>For the console server profile, the possible protocols are socket_server (when telnet is used) and socket_ssh (when ssh version one or two is used).</td>
<td>socket_server</td>
</tr>
</tbody>
</table>

FIGURE 4.7 CONSOLE SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS (CONT.)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.data_buffering</td>
<td>A non-zero value activates data buffering. A file (/var/run/ttyS#.data) is created on the Cyclades-TS and all data received from the port is captured. The file contains a maximum size equal to this parameter, which is overwritten each time the maximum is reached. This file can be viewed using the normal Unix tools (cat, vi, more, etc.).</td>
<td>0</td>
</tr>
<tr>
<td>all.syslog_buffering</td>
<td>When non-zero, the contents of the data buffer are sent to the syslog server every time a quantity of data equal to this parameter is collected. The syslog level for data buffering is hard coded to level 5, so the parameter syslog_level should be greater than or equal to 5, and data_buffering non-zero for syslog generation.</td>
<td>0</td>
</tr>
<tr>
<td>all.dont_show_DB menu</td>
<td>When zero, shows a menu with data buffering options when a non-empty data buffering file is found.</td>
<td>1</td>
</tr>
<tr>
<td>all.users</td>
<td>Restricts access to ports by user name (only the users listed can access the port or all but the users listed can access the port (with !).) A single comma and spaces/tabs may be used between names. A comma may not appear between the ! and the first user name. The users may be local or Radius.</td>
<td>! joe, mark</td>
</tr>
<tr>
<td>all.sniff_mode</td>
<td>This parameter determines what the second connected user (see parameter admin_users below) can see of the session of the first connected user: in shows data written to the port, out shows data received from the port, and i/o shows both streams. The second session is called a sniff session and this feature is activated whenever the protocol parameter is set to socket_ssh or socket_server.</td>
<td>out</td>
</tr>
</tbody>
</table>

FIGURE 4.7 CONSOLE SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS (CONT.)
Cyclades-TS Installation Manual

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.admin_users</td>
<td>This parameter determines which users can open a sniff session, which is where a second connected user can see everything that a first connected user is doing on a given port. The second user can also cancel the first user's session (and take over). Only two users can connect to the same port simultaneously. This parameter is obligatory when authtype is not none, to determine who can open a sniff session or cancel a previous session.</td>
<td>peter, john</td>
</tr>
<tr>
<td>s1.tty</td>
<td>The device name for the port is set to the value given in this parameter.</td>
<td>ttyS1</td>
</tr>
<tr>
<td>s1.authtype</td>
<td>Authtype must not be none for the sniff session feature to function with authentication. If none is chosen, any user can open a sniff session and/or cancel sessions of other users.</td>
<td>local</td>
</tr>
<tr>
<td>s2.tty</td>
<td>See the s1.tty entry in this table.</td>
<td>ttyS2</td>
</tr>
<tr>
<td>s8.tty</td>
<td>See the s1.tty entry in this table.</td>
<td>ttyS8</td>
</tr>
</tbody>
</table>

FIGURE 4.7 CONSOLE SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS (CONT.)

Execute the command `signal_ras hup` to activate the changes. At this point, the configuration should be tested. A step-by-step check list follows.

1. Since Radius authentication was chosen, create a new user on the Radius authentication server called test and provide him with the password test.
2. From the console, ping 200.200.200.2 to make sure the Radius authentication server is reachable.
3. Make sure that the physical connection between the Cyclades-TS and the servers is correct. A cross cable (not the modem cable provided with the product) should be used. Please see the hardware specifications appendix for pin-out diagrams.
4. The Cyclades-TS has been set for communication at 9600 bps, 8N1. The server must also be configured to communicate on the serial console port with the same parameters. Also make sure that the computer is configured to route console data to the serial console port.
5. From a server on the LAN (not from the console), try to telnet to the server connected to the first port of the Cyclades-TS using the following command:

\[\text{telnet 200.200.200.1 7001} \]

For both telnet and ssh sessions, the servers can be reached by either:
1. Ethernet IP of the Cyclades-TS and assigned socket port
 or
2. Individual IP assigned to each port.

If everything is configured correctly, a telnet session should open on the server connected to port 1. If not, check the configuration, follow the steps above again, and check the troubleshooting appendix. Now continue on to step four later in this chapter.

STEP THREE - TERMINAL SERVER

The terminal server profile allows a terminal user to access a server on the LAN. The terminal can be either a dumb terminal or a terminal emulation program on a PC. No authentication is used in this example and rlogin is chosen as the protocol.
The fifth configuration file (the first four were described in step two) is specific to the Cyclades-TS and a sample file with comments is supplied in the Linux file system. It is called /etc/portslave/pslave.conf. A listing of the pslave.conf file with all possible parameters, as well as the files used to create the three applications in this chapter, is provided in Appendix C. There are three basic types of parameters: conf.* parameters are global or apply to the Ethernet interface; all.* parameters are used to set default parameters for all ports, and s#.* parameters change the default port parameters for individual ports. An all.* parameter can be overridden by a s#.* parameter appearing later in the pslave.conf file (or vice-versa). A brief description of each parameter used for the terminal server profile is given in Figures 4.9-4.10.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>conf.eth_ip</td>
<td>The IP address of the Ethernet interface. This parameter, along with the next two, is used by the cy_ras program to OVERWRITE the file /etc/network/ifcfg_eth0 as soon as the command "signal_ras HUP" is executed. The file /etc/network/ifcfg_eth0 should not be edited by the user unless the cy_ras application is not going to be used.</td>
<td>200.200.200.1</td>
</tr>
<tr>
<td>conf.eth_mask</td>
<td>The mask for the Ethernet network.</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>conf.eth_mtu</td>
<td>The Maximum Transmission Unit size, which determines whether or not packets should be broken up.</td>
<td>1500</td>
</tr>
<tr>
<td>conf.lockdir</td>
<td>The lock directory, which is /var/lock for the Cyclades-TS. It should not be changed unless the user decides to customize the operating system.</td>
<td>/var/lock</td>
</tr>
<tr>
<td>conf.rlogin</td>
<td>Location of the rlogin binary that accepts the -i flag.</td>
<td>/usr/local/bin/rlogin-radius</td>
</tr>
<tr>
<td>conf.telnet</td>
<td>Location of the telnet utility.</td>
<td>/bin/telnet</td>
</tr>
<tr>
<td>conf.ssh</td>
<td>Location of the ssh utility.</td>
<td>/bin/ssh</td>
</tr>
<tr>
<td>conf.locallogins</td>
<td>This parameter is only necessary when authentication is being performed for a port. When set to one, it is possible to log in to the Cyclades-TS directly by placing a "!" before your login name, then using your normal password. This is useful if the Radius authentication server is down.</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 4.9 TERMINAL SERVER PSLAVE.CONF GLOBAL PARAMETERS
Cyclades-TS Installation Manual

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.speed</td>
<td>The speed for all ports. This value (as for all "all." parameters) can later be overridden for individual ports using the s<port number>.speed parameter.</td>
<td>9600</td>
</tr>
<tr>
<td>all.datasize</td>
<td>The data size for all ports.</td>
<td>8</td>
</tr>
<tr>
<td>all.stopbits</td>
<td>The number of stop bits for all ports</td>
<td>1</td>
</tr>
<tr>
<td>all.parity</td>
<td>The parity for all ports.</td>
<td>none</td>
</tr>
<tr>
<td>all.authtype</td>
<td>There are several authentication type options: local (authentication is performed using the /etc/passwd file), radius (authentication is performed using a Radius authentication server), none, local/radius (authentication is performed locally first, switching to Radius if unsuccessful), radius/local (the opposite of the previous option) and RadiusDownLocal (local authentication is tried only when the Radius server is down). Note that this parameter controls the authentication required by the Cyclades-TS. The authentication required by the device to which the user is connecting is controlled separately.</td>
<td>local</td>
</tr>
<tr>
<td>all.protocol</td>
<td>For the terminal server profile, the possible protocols are login (which requests username and password) and rlogin (which receives the username from the TS and requests a password), telnet, ssh and ssh2.</td>
<td>telnet</td>
</tr>
<tr>
<td>all.host</td>
<td>The IP address of the host to which the terminals will connect.</td>
<td>200.200.200.3</td>
</tr>
</tbody>
</table>

FIGURE 4.10 TERMINAL SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.issue</td>
<td>This text determines the format of the login banner that is issued when a connection is made to the Cyclades-TS. \n represents a new line and \r represents a carriage return.</td>
<td>TSLINUX - Portslave Internet Services\n Welcome to terminal server %h port S%p \n Customer Support: 510-770-9727 www.cyclades.com\n</td>
</tr>
<tr>
<td>all.prompt</td>
<td>This text defines the format of the login prompt. Expansion characters, listed in Appendix C, can be used here.</td>
<td>%h login:</td>
</tr>
<tr>
<td>all.term</td>
<td>This parameter defines the terminal type assumed when performing rlogin or telnet to other hosts.</td>
<td>vt100</td>
</tr>
<tr>
<td>all.flow</td>
<td>This sets the flow control to hardware, software, or none.</td>
<td>hard</td>
</tr>
<tr>
<td>all.socket_port</td>
<td>This parameter defines the port(s) to be used by the protocols telnet, socket_client and socket_server. It is mandatory for the socket_server protocol; for the other two protocols a default value of 23 is used when no value is configured.</td>
<td>23</td>
</tr>
<tr>
<td>all.users</td>
<td>Restricts access to a port by user name (only the users listed can access the port or all but the users listed can access the port (with !).) A single comma and spaces/tabs may be used between names. A comma may not appear between the ! and the first user name. The users may be local or Radius.</td>
<td>! joe, mark</td>
</tr>
<tr>
<td>s1.tty</td>
<td>The device name for the port is set to the value given in this parameter.</td>
<td>ttyS1</td>
</tr>
<tr>
<td>s16.tty</td>
<td>The device name for the port is set to the value given in this parameter. If a device name is not provided for a port, it will not function.</td>
<td>ttyS16</td>
</tr>
</tbody>
</table>

FIGURE 4.10 TERMINAL SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS (CONTINUED)
Execute the command `signal_ras hup` to activate the changes. At this point, the configuration should be tested. A step-by-step check list follows.

1. Since authentication was set to none, the Cyclades-TS will not authenticate the user. However, the Linux Server receiving the connection will. Create a new user on the server called test and provide him with the password test.
2. From the console, ping 200.200.200.3 to make sure the server is reachable.
3. Make sure that the physical connection between the Cyclades-TS and the terminals is correct. A cross cable (not the modem cable provided with the product) should be used. Please see the hardware specifications appendix for pin-out diagrams.
4. The Cyclades-TS has been set for communication at 9600 bps, 8N1. The terminals must also be configured with the same parameters.
5. From a terminal connected to the Cyclades-TS, try to log in to the server using the username and password configured in item one.

Now continue on to step four later in this chapter.

STEP THREE - REMOTE ACCESS SERVER

The remote access server profile allows a modem user to access the LAN. Radius authentication is used in this example and ppp is chosen as the protocol.
The fifth configuration file (the first four were described in step two) is specific to the Cyclades-TS and a sample file with comments is supplied in the Linux file system. It is called /etc/portslave/pslave.conf. A listing of the pslave.conf file with all possible parameters, as well as the files used to create the three applications in this chapter, is provided in Appendix C. There are three basic types of parameters: conf.* parameters are global or apply to the Ethernet interface; all.* parameters are used to set default parameters for all ports, and s#.* parameters change the default port parameters for individual ports. An all.* parameter can be overridden by a s#.* parameter appearing later in the pslave.conf file (or vice-versa). A brief description of each parameter used for the remote access server profile is given in Figures 4.12-4.13.
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>conf.eth_ip</td>
<td>The IP address of the Ethernet interface. This parameter, along with the next two, is used by the cy_ras program to OVERWRITE the file /etc/network/ifcfg_eth0 as soon as the command "signal_ras HUP" is executed. The file /etc/network/ifcfg_eth0 should not be edited by the user unless the cy_ras application is not going to be used.</td>
<td>200.200.200.1</td>
</tr>
<tr>
<td>conf.eth_mask</td>
<td>The mask for the Ethernet network.</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>conf.eth_mtu</td>
<td>The Maximum Transmission Unit size, which determines whether or not packets should be broken up.</td>
<td>1500</td>
</tr>
<tr>
<td>conf.lockdir</td>
<td>The lock directory, which is /var/lock for the Cyclades-TS. It should not be changed unless the user decides to customize the operating system.</td>
<td>/var/lock</td>
</tr>
<tr>
<td>conf.pppd</td>
<td>Location of the ppp daemon with Radius.</td>
<td>/usr/local/sbin/pppd-radius</td>
</tr>
<tr>
<td>conf.syslog</td>
<td>The IP address of a remote syslog daemon can be provided here, if desired.</td>
<td>200.200.200.3</td>
</tr>
<tr>
<td>conf.facility</td>
<td>This value (0-7) is sent to the syslog server (the TS is a syslog client) to indicate in which file the syslog messages should be stored. The file /etc/syslog.conf on the syslog server contains a mapping between facility numbers and server log files.</td>
<td>7</td>
</tr>
</tbody>
</table>

FIGURE 4.12 REMOTE ACCESS SERVER PSLAVE.CONF GLOBAL PARAMETERS
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.speed</td>
<td>The speed for all ports. This value (as for all "all." parameters) can later be overridden for individual ports using the s<port number>.speed parameter.</td>
<td>57600</td>
</tr>
<tr>
<td>all.datasize</td>
<td>The data size for all ports.</td>
<td>8</td>
</tr>
<tr>
<td>all.stopbits</td>
<td>The number of stop bits for all ports</td>
<td>1</td>
</tr>
<tr>
<td>all.parity</td>
<td>The parity for all ports.</td>
<td>none</td>
</tr>
<tr>
<td>all.syslog_level</td>
<td>This variable determines which syslog messages will be sent to the syslog server configured in the conf.syslog parameter. A value of 0 suppresses all but emergency messages while values between 1 and 7 send progressively more types of messages for each increment.</td>
<td>4</td>
</tr>
<tr>
<td>all.console_level</td>
<td>This variable determines which syslog messages will be sent to the Cyclades-TS console connected through the console interface. See the previous parameter for a description of possible values</td>
<td>4</td>
</tr>
<tr>
<td>all.authtype</td>
<td>There are several authentication type options: local (authentication is performed using the /etc/passwd file), radius (authentication is performed using a Radius authentication server), none, local/radius (authentication is performed locally first, switching to Radius if unsuccessful), radius/local (the opposite of the previous option) and RadiusDownLocal (local authentication is tried only when the Radius server is down). Note that this parameter controls the authentication required by the Cyclades-TS. The authentication required by the device to which the user is connecting is controlled separately.</td>
<td>radius</td>
</tr>
</tbody>
</table>

FIGURE 4.13 REMOTE ACCESS SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.authhost1</td>
<td>This address indicates the location of the Radius authentication server and is only necessary if this option is chosen in the previous parameter. A second Radius authentication server can be configured with the parameter all.authhost2.</td>
<td>200.200.200.2</td>
</tr>
<tr>
<td>all.accthost1</td>
<td>This address indicates the location of the Radius accounting server, which can be used to track how long users are connected after being authorized by the authentication server. Its use is optional.</td>
<td>200.200.200.2</td>
</tr>
<tr>
<td>all.radtimeout</td>
<td>This is the timeout (in seconds) for a radius authentication query. The first server (authhost1) is tried "radretries" times, and then the second (if configured) is contacted "radretries" times. If the second also fails to respond, Radius authentication fails.</td>
<td>5</td>
</tr>
<tr>
<td>all.radretries</td>
<td>Defines the number of times each Radius server is tried before another is contacted. The default, if not configured, is 5.</td>
<td>5</td>
</tr>
<tr>
<td>all.secret</td>
<td>This is the shared secret necessary for communication between the Cyclades-TS and the Radius servers.</td>
<td>cocomero</td>
</tr>
<tr>
<td>all.protocol</td>
<td>For the remote access server profile, the available protocols are PPP, SLIP and CSLIP.</td>
<td>ppp</td>
</tr>
<tr>
<td>all.ipno</td>
<td>The IP address to be assigned to the dial-in users.</td>
<td>200.200.200.11+</td>
</tr>
<tr>
<td>all.netmask</td>
<td>The netmask corresponding to the IP number provided in the previous parameter.</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>all.mtu</td>
<td>The maximum transmission unit (MTU) that can be transmitted in a PPP packet.</td>
<td>1500</td>
</tr>
<tr>
<td>all.mru</td>
<td>The maximum reception unit (MRU) that can be received in a PPP packet.</td>
<td>1500</td>
</tr>
</tbody>
</table>

FIGURE 4.13 REMOTE ACCESS SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS (CONTINUED)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.initchat</td>
<td>Modem initialization string.</td>
<td><code>TIMEOUT 10 "" \d\n\ATZ\n\ATMOK\n\"\" \"\" \"\" \R\N\"\" \"\" \"\" \STATUS Incoming %p:1.HANDSHAKE "" \R\N\"\" \"\" \"\" \STATUS Connected %p:1.HANDSHAKE</code></td>
</tr>
<tr>
<td>all.flow</td>
<td>This sets the flow control to hardware, software, or none.</td>
<td><code>hard</code></td>
</tr>
<tr>
<td>all.autoppp</td>
<td>PPP options to auto-detect a ppp session.</td>
<td><code>%i:%j novj \ proxyarp modem asyncmap 000A0000 \ noipx noccp login auth require-pap refuse-chap \ mtu %t mru %t \ plugin /usr/lib/libpsr.so</code></td>
</tr>
<tr>
<td>all.pppopt</td>
<td>PPP options when user has already been authenticated.</td>
<td><code>%i:%j novj \ proxyarp modem asyncmap 000A0000 \ noipx noccp mtu %t mru %t netmask %m \ idle %I maxconnect %T \ plugin /usr/lib/libpsr.so</code></td>
</tr>
<tr>
<td>s1.tty</td>
<td>The device name for the port is set to the value given in this parameter. If a device name is not provided for a port, it will not function.</td>
<td><code>ttyS1</code></td>
</tr>
<tr>
<td>s32.tty</td>
<td>See the s1.tty entry in this table.</td>
<td><code>ttyS32</code></td>
</tr>
</tbody>
</table>

FIGURE 4.13 REMOTE ACCESS SERVER PSLAVE.CONF PORT-SPECIFIC PARAMETERS (CONTINUED)
Execute the command `signal_ras hup` to activate the changes. At this point, the configuration should be tested. A step-by-step check list follows.

1. Since Radius authentication was chosen, create a new user on the Radius authentication server called `test` and provide him with the password `test`.
2. From the console, ping `200.200.200.2` to make sure the Radius authentication server is reachable.
3. Make sure that the physical connection between the Cyclades-TS and the modems is correct. The modem cable provided with the product should be used. Please see the hardware specifications appendix for pin-out diagrams.
4. The Cyclades-TS has been set for communication at 57600 bps, 8N1. The modems should be programmed to operate at the same speed on the DTE interface. Also make sure that the computer is configured to route console data to the serial console port.
5. Try to dial in to the Cyclades-TS from a remote computer using the username and password configured in item one. The computer dialing in must be configured to receive its IP address from the remote access server (the Cyclades-TS in this case) and to use PAP authentication.

Now continue on to step four.

STEP FOUR - FOR ALL PROFILES

The next step is to update the system with the modified data in the files above. Make sure the file named `/etc/config_files` contains the names of all files that should be saved to flash.

Next, the command `saveconf`, which reads the `/etc/config_files` file, should then be run. `saveconf` copies all the files listed in the file `/etc/config_files` from the ramdisk to `/proc/flash/script`. The previous contents of the file `/proc/flash/script` will be lost.
Restart the cy_ras process using its process ID. This can be done by executing the command:

```
signal_ras hup
```

This executes the ps command, searches for the cy_ras process id, then sends the signal HUP to the process, all in one step. Now the configuration is complete.

```
saveconf is equivalent to tar -czf /proc/flash/script -T /etc/config_files in standard Linux (this command is emulated by busybox on the TS and does not support the z flag).
```

```
restoreconf does the opposite of saveconf, copying the contents of the /proc/flash/script file to the corresponding files in the ramdisk. The files on the ramdisk are overwritten. 
restoreconf is run automatically each time the Cyclades-TS is booted.
```

Clustering

Clustering has been added to the Cyclades-TS with firmware version 1.3.0. It allows the stringing of Terminal Servers so that one master Cyclades-TS can be used to access all Cyclades-TSs on a LAN. The master Cyclades-TS can manage up to 512 serial ports, so

- 1 Master TS1000 + 31 slave TS1000s or
- 1 Master TS2000 + 15 slave TS2000s or
- 1 Master TS3000 + 9 slave TS3000s + 1 slave TS2000

can be clustered.

An example with one master TS2000 and two slave TS2000s is shown in Figure 4.14.
FIGURE 4.14 EXAMPLE USING THE CLUSTERING FEATURE.
The Master Cyclades-TS must contain references to the Slave ports. The configuration described earlier for Console Access Servers should be followed with the following exceptions for the Master and Slaves:

Master Configuration:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>conf.eth_ip</td>
<td>Ethernet Interface IP address.</td>
<td>20.20.20.1</td>
</tr>
<tr>
<td>conf.eth_ip_alias</td>
<td>Secondary IP address for the Ethernet Interface (needed for clustering feature).</td>
<td>209.81.55.110</td>
</tr>
<tr>
<td>conf.eth_mask_alias</td>
<td>Mask for secondary IP address above.</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>all.socket_port</td>
<td>This value applies to both the local ports and ports on slave Cyclades-TSs.</td>
<td>7001+</td>
</tr>
<tr>
<td>all.protocol</td>
<td>Depends on the application.</td>
<td>Socket_ssh or socket_server</td>
</tr>
<tr>
<td>all.authtype</td>
<td>Depends on the application.</td>
<td>Radius or local or none</td>
</tr>
<tr>
<td>s33.tty</td>
<td>This parameter must be created in the master TS file for every slave port.</td>
<td>20.20.20.2:7033</td>
</tr>
<tr>
<td></td>
<td>Its format is IP_of_Slave[:slave_socket_port] for non-master ports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this case, the slave_socket_port value is not necessary because s33.socket_port is automatically set to 7033 by all.socket_port above.</td>
<td></td>
</tr>
<tr>
<td>s33.serverfarm</td>
<td>An alias for this port.</td>
<td>Server_on_slave1_serial_s1</td>
</tr>
<tr>
<td>s33.ipno</td>
<td>This parameter must be created in the master TS file for every slave port, unless configured using all.ipno.</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>s34.tty</td>
<td>See s33.tty.</td>
<td>20.20.20.2:7034</td>
</tr>
<tr>
<td>s34.serverfarm</td>
<td>An alias for this port.</td>
<td>Server_on_slave1_serial_s2</td>
</tr>
<tr>
<td>s34.ipno</td>
<td>See s33.ipno.</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

FIGURE 4.15 MASTER CYCLADES-TS CONFIGURATION (WHERE IT DIFFERS FROM THE STANDARD CAS PROFILE)
Parameter Description Value for This Example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>s35.tty</td>
<td>See s33.tty.</td>
<td>20.20.20.2:7035</td>
</tr>
<tr>
<td>s35.serverfarm</td>
<td>An alias for this port.</td>
<td>Server_on_slave1_serial_s3</td>
</tr>
<tr>
<td>s35.ipno</td>
<td>See s33.ipno.</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>etc. for s36-s64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S65.tty</td>
<td>The format of this parameter is</td>
<td>20.20.20.3:7301</td>
</tr>
<tr>
<td></td>
<td>IP_of_Slave[:slave_socket_port] for non-master ports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The value 7301 was chosen arbitrarily for this example.</td>
<td></td>
</tr>
<tr>
<td>S65.serverfarm</td>
<td>An alias for this port.</td>
<td>Server_on_slave2_serial_s1</td>
</tr>
<tr>
<td>S65.ipno</td>
<td>See s33.ipno.</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>S66.tty</td>
<td>See s65.tty.</td>
<td>20.20.20.3:7302</td>
</tr>
<tr>
<td>S66.serverfarm</td>
<td>An alias for this port.</td>
<td>Server_on_slave2_serial_s2</td>
</tr>
<tr>
<td>S66.ipno</td>
<td>See s33.ipno.</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>S67.tty</td>
<td>See s65.tty.</td>
<td>20.20.20.3:7303</td>
</tr>
<tr>
<td>S67.serverfarm</td>
<td>An alias for this port.</td>
<td>Server_on_slave2_serial_s3</td>
</tr>
<tr>
<td>S67.ipno</td>
<td>See s33.ipno.</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>etc. for s68-s96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4.15 MASTER CYCLADES-TS CONFIGURATION (CONT.)

The Slave Cyclades-TSs do not need to know they are being accessed through the Master Cyclades-TS. Their port numbers, however, must agree with those assigned by the Master.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.protocol</td>
<td>socket_server</td>
</tr>
<tr>
<td>all.authtype</td>
<td>none</td>
</tr>
<tr>
<td>conf.eth_ip</td>
<td>20.20.20.2</td>
</tr>
<tr>
<td>all.socket_port</td>
<td>7033+</td>
</tr>
</tbody>
</table>

FIGURE 4.16 CYCLADES-TS CONFIGURATION FOR SLAVE 1 (WHERE IT DIFFERS FROM THE STANDARD CAS PROFILE)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value for This Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.protocol</td>
<td>Socket_server</td>
</tr>
<tr>
<td>all.authtype</td>
<td>None</td>
</tr>
<tr>
<td>conf.eth_ip</td>
<td>20.20.20.3</td>
</tr>
<tr>
<td>all.socket_port</td>
<td>7301+</td>
</tr>
</tbody>
</table>

FIGURE 4.17 CYCLADES-TS CONFIGURATION FOR SLAVE 2 (WHERE IT DIFFERS FROM THE STANDARD CAS PROFILE)

To access ports from the remote management workstation, use telnet with the secondary IP address:

- Telnet 209.81.55.110 7001 to access the first port of the Master Cyclades-TS
- Telnet 209.81.55.110 7033 to access the first port of Slave 1
- Telnet 209.81.55.110 7065 to access the first port of Slave 2

Note that socket port 7065 is being used in the last example to access port 7301 in Slave 2.

ssh can also be used from the remote management workstation:

- ssh -l <username>:Server_on_slave2_serial_s3 209.81.55.110 to access the third port of Slave 2
- ssh -l <username>:7069 209.81.55.110 to access the fifth port of Slave 2
CHAPTER 5 UPGRADES AND TROUBLESHOOTING

Upgrades
All 6 files added by Cyclades to the standard Linux files are in the /proc/flash directory. They are:
- boot_ori - original boot code
- boot_alt - alternate boot code
- syslog - event logs (not used by Linux)
- config - configuration parameters, only the boot parameters are used by the boot code
- zImage - Linux kernel image
- script - file where all Cyclades-TS configuration information is stored

To upgrade the Linux kernel provided in the Cyclades-TS, ftp the new zImage file on top of the zImage file in the /proc/flash directory. Then, reboot, and the new Linux kernel will take over. This can be confirmed by typing
cat /proc/version
to see the Linux kernel version.

Troubleshooting
If the Cyclades-TS booted properly, the interfaces can be verified using ifconfig and ping. If ping does not work, check the routing table using the command route. Of course, all this should be tried after checking that the cables are connected correctly.

As mentioned in Chapter 4, the file /etc/config_files contains a list of files acted upon by saveconf and restoreconf. If a file is missing, it will not be loaded onto the ramdisk on boot. The following table lists files that should be included in the /etc/config_files file and which programs use each.
<table>
<thead>
<tr>
<th>File</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/securetty</td>
<td>telnet, login, su</td>
</tr>
<tr>
<td>/etc/issue</td>
<td>getty</td>
</tr>
<tr>
<td>/etc/getty_ttyS0</td>
<td>login (via console)</td>
</tr>
<tr>
<td>/etc/hostname</td>
<td>tcp</td>
</tr>
<tr>
<td>/etc/hosts</td>
<td>tcp</td>
</tr>
<tr>
<td>/etc/host.conf</td>
<td>tcp</td>
</tr>
<tr>
<td>/etc/nsswitch.conf</td>
<td>dns</td>
</tr>
<tr>
<td>/etc/hosts.conf</td>
<td>dns</td>
</tr>
<tr>
<td>/etc/config_files</td>
<td>saveconf</td>
</tr>
<tr>
<td>/etc/passwd</td>
<td>login, passwd, adduser...</td>
</tr>
<tr>
<td>/etc/group</td>
<td>login, passwd, adduser...</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_key.pub</td>
<td>sshd</td>
</tr>
<tr>
<td>/etc/ssh/sshd_config</td>
<td>sshd</td>
</tr>
<tr>
<td>/etc/ssh/ssh_config</td>
<td>ssh client</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_key</td>
<td>sshd (ssh1)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_key.pub</td>
<td>sshd (ssh1)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_dsa_key</td>
<td>sshd (ssh2)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_dsa_key.pub</td>
<td>sshd (ssh2)</td>
</tr>
<tr>
<td>/etc/snmp/snmpd.conf</td>
<td>snmpd</td>
</tr>
<tr>
<td>/etc/portslave/pslave.conf</td>
<td>cy_ras, portslave, TS configuration information</td>
</tr>
<tr>
<td>/etc/network/ifcfg_eth0</td>
<td>ifconfig eth0, cy_ras, rc.sysconf</td>
</tr>
<tr>
<td>/etc/network/ifcfg*</td>
<td>ifconfig, cy_ras, rc.sysinit</td>
</tr>
<tr>
<td>/etc/network/ifcfg_lo</td>
<td>ifconfig lo, cy_ras, rc.sysinit</td>
</tr>
<tr>
<td>/var/run/radsession.id</td>
<td>radinit, radius authentication process</td>
</tr>
<tr>
<td>/home</td>
<td>adduser, passwd</td>
</tr>
<tr>
<td>/etc/network/st_routes</td>
<td>ifconfig, cy_ras, rc.sysconf</td>
</tr>
</tbody>
</table>

If any of the files listed in `/etc/config_files` is modified, the Cyclades-TS administrator must execute the command `saveconf` before rebooting the Cyclades-TS or the changes will be lost. If a file is created (or a file...
name altered), its name must be added to this file before executing saveconf and reboot.

Cyclades Technical Support is always ready to help with any configuration problems. Before calling, execute the command

```
cat /proc/version
```

and note the Linux version and Cyclades-TS version written to the screen. This will speed resolution of most problems.

Hardware Test

A hardware test called tstest is included with the Cyclades-TS firmware. It is a menu-driven program, run by typing tstest at the command prompt, and the various options are described below. Note that the Cyclades-TS should not be tested while in use as the test will inactivate all ports.

Port Test

Either a cross cable or a loop-back connector is necessary for this test. The pinout diagrams are supplied in appendix B. Connect the loop-back connector to the modem cable and then connect the modem cable to the port to be tested (or connect a cross cable between two ports to be tested). When tstest senses the presence of the cable or connector, the test will be automatically run and the result shown on the screen.

Each line of data correponds to a port in test. The last 4 columns (DATA, CTS, DCD, and DSR) indicate errors. The values in these columns should be zero. The figure below is an example of the output screen.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Sent</th>
<th>Received</th>
<th>Passes</th>
<th>Data</th>
<th>CTS</th>
<th>DCD</th>
<th>DSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

When this test is run with a cable or connector without the DSR signal (see the pinout diagram for the cable or connector being used), errors will appear in the DSR column. This does not indicate a problem with the port. In the example above, tstest perceived that a loop-back connector was attached to port 2 and that a cross cable
was used to connect ports 4 and 5.

Port Conversation

This test sends and receives data on the selected port. One way to run this test is to place a loop-back connector on the port to be tested and begin. Enter the number of the port and a baud rate (9600 is a typical value). Type some letters, and if the letters appear on the screen, the port is working. If the letters do not appear on the screen (which also occurs if the loop-back connector is removed), the port is not functioning correctly.

A second method that can be used to test the port is to connect it to a modem with a straight cable. Begin the test and type “at”. The modem should respond with “OK”, which will appear on the screen. Other commands can be sent to the modem or to any other serial device.

Test Signals Manually

This test confirms that signals are being sent and received on the selected port. Neither the loop-back connector nor the cross cable are necessary. Enter the number of the port to be tested and begin the test.

<table>
<thead>
<tr>
<th>State</th>
<th>DTR</th>
<th>DCD</th>
<th>DSR</th>
<th>RTS</th>
<th>CTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

First, type Ctrl-D to see the X in the DTR column move position, then type Ctrl-R to see the X in the RTS column change position. If each of the Xs moves in response to its command, the signals are being sent.

Another method to test the signals is to use a loop-back connector. Enter the number of the port with the loop-back connector and start the test. In this case, when Ctrl-D is typed, the Xs in the first three columns will move as shown below.
This is because the test is receiving the DTR signal sent through the DCD and DSR channels. When Ctrl-R is typed, the Xs in the RTS and CTS columns should move together. If the Xs change position as described, the signals are being sent and received correctly.

Single User Mode

The Cyclades-TS has a single user mode used when:
- The name or password of the user with root privileges is lost or forgotten,
- After an upgrade or downgrade which leaves the Cyclades-TS unstable,
- After a configuration change which leaves the Cyclades-TS inoperative or unstable.

Type the word “single” (with a blank space before the word) during boot using a console connection. This cannot be done using a telnet or other remote connection.

The initial output of the boot process is shown below.

```
Entry Point = 0x00002120
loaded at: 00002120 0000D370
relocated to: 00002120 0000D370
board data at: 003052C8 0030537C
relocated to: 002FF120 002FF1D4
zimage at: 00008100 0006827E
relocated to: 00DB7000 00E1717E
initrd at: 0006827E 0024F814
relocated to: 00E18000 00FF596
avail ram: 0030B270 00E18000
Linux/PPC load: root=/dev/ram
```
After printing “Linux/PPC load: root=/dev/ram”, the Cyclades-TS waits approximately 10 seconds for user input. This is where the user should type “single”. When the boot process is complete, the Linux prompt will appear on the console:

```
[root@(none) /]#
```

If the password or username was forgotten, execute the following commands:
```bash
passwd
saveconf
reboot
```

For configuration problems, the user has two options:
1. Edit the file(s) causing the problem with vi, then execute the commands
   ```bash
   saveconf
   reboot
   ```

2. Reset the configuration by executing the commands:
   ```bash
   echo 0 > /proc/flash/script
   reboot
   ```

If the problem is due to an upgrade/downgrade, a second downgrade/upgrade will be necessary to reverse the process. First, the network must be initialized in order to reach a ftp server. Execute the following script, replacing the parameters with values appropriate for your system. If your ftp server is on the same network as the TS, the gw and mask parameters are optional.

```bash
config_eth0 ip 200.200.200.1 mask 255.255.255.0 gw 200.200.200.5
```

At this point, the DNS configuration (in the file /etc/resolv.conf) should be checked. Then, download the kernel image using the ftp command.
APPENDIX A INFORMATION FOR USERS NOT FAMILIAR WITH LINUX

Users and Passwords
A username and password are necessary to log in to the Cyclades-TS. The user “root” is predefined, without a password. A password should be configured as soon as possible to avoid unauthorized access.

Type the command:

 passwd

to create a password for the root user.

To create a regular user (without root privileges), use the commands:

 adduser user_name
 passwd user_password

To log out, type “logout” at the command prompt.

Linux File Structure
The Linux file system is organized hierarchically, with the base (or root) directory represented by the symbol “/”. All folders and files are nested within each other below this base directory. The directories located just below the base directory are:
Basic File Manipulation Commands

The basic file manipulation commands allow the user to copy, delete and move files and create and delete directories.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cp file_name destination</code></td>
<td>Copies the file indicated by <code>file_name</code> to the path indicated by <code>destination</code>.</td>
</tr>
<tr>
<td>a) <code>cp text.txt /tmp</code></td>
<td>a) copies the file text.txt in the current directory to the tmp directory.</td>
</tr>
<tr>
<td>b) <code>cp /chap/robo.php ./excess.php</code></td>
<td>b) copies the file robo.php in the chap directory to the current directory and renames the copy excess.php.</td>
</tr>
<tr>
<td><code>rm file_name</code></td>
<td>Removes the file indicated by <code>file_name</code>.</td>
</tr>
<tr>
<td><code>mv file_name destination</code></td>
<td>Moves the file indicated by <code>file_name</code> to the path indicated by <code>destination</code>.</td>
</tr>
<tr>
<td><code>mkdir directory_name</code></td>
<td>Creates a directory named <code>directory_name</code>.</td>
</tr>
<tr>
<td>a) <code>mkdir spot</code></td>
<td>a) creates the directory spot in the current directory.</td>
</tr>
<tr>
<td>b) <code>mkdir /tmp/snuggles</code></td>
<td>b) creates the directory snuggles in the directory tmp.</td>
</tr>
<tr>
<td><code>rmdir directory_name</code></td>
<td>Removes the directory indicated by <code>directory_name</code>.</td>
</tr>
</tbody>
</table>
Other commands allow the user to change directories and see the contents of a directory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pwd</code></td>
<td>Supplies the name of the current directory. While logged in, the user is always "in" a directory. The default initial directory is the user's home directory, <code>/home/<username></code></td>
</tr>
<tr>
<td><code>ls [options] directory_name</code></td>
<td>Lists the files and directories within <code>directory_name</code>. Some useful options are <code>-l</code> for more detailed output and <code>-a</code> which shows hidden system files.</td>
</tr>
<tr>
<td><code>cd directory_name</code></td>
<td>Changes the directory to the one specified</td>
</tr>
<tr>
<td><code>cat file_name</code></td>
<td>Prints the contents of <code>file_name</code> to the screen.</td>
</tr>
</tbody>
</table>

Shortcuts:

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>. (a dot)</td>
<td>represents the current directory</td>
</tr>
<tr>
<td>.. (two dots)</td>
<td>represents one directory above the current directory (i.e. one directory closer to the base directory).</td>
</tr>
</tbody>
</table>

The vi Editor

To edit a file using the vi editor, type `vi file_name`

`vi` is a three-state line editor: it has a command mode, a line mode and an editing mode. If in doubt as to which mode you are in, press the `<ESC>` key which will bring you to the command mode.

<table>
<thead>
<tr>
<th>Mode</th>
<th>What is done there</th>
<th>How to Get There</th>
</tr>
</thead>
<tbody>
<tr>
<td>command mode</td>
<td>navigation within the open file</td>
<td>Press the <code><ESC></code> key.</td>
</tr>
<tr>
<td>editing mode</td>
<td>text editing</td>
<td>See list of editing commands below.</td>
</tr>
<tr>
<td>line mode</td>
<td>file saving, opening, etc. exiting</td>
<td>From the command mode, type <code>:</code> (the colon).</td>
</tr>
<tr>
<td></td>
<td>from vi</td>
<td></td>
</tr>
</tbody>
</table>
Entering the program, the user is automatically in the command mode. To navigate to the part of the file to be edited, use the following keys:

- **h**: moves the cursor to the left (left arrow)
- **j**: moves the cursor to the next line (down arrow)
- **k**: moves the cursor to the previous line (up arrow)
- **l**: moves the cursor to the right (right arrow)

Having arrived at the location where text should be changed, use these commands to modify the text (note commands “i” and “o” will move you into the editing mode and everything typed will be taken literally until you press the <ESC> key to return to the command mode):

- **i**: insert text before the cursor position (everything to the right of the cursor is shifted right)
- **o**: create a new line below the current line and insert text (all lines are shifted down)
- **dd**: remove the entire current line
- **u**: undo the last modification
- **x**: delete the letter at the cursor position

Now that the file has been modified, enter the line mode (by typing “:” from the command mode) and use one of the following commands:

- **w**: save the file (w is for write)
- **wq**: save and close the file (q is for quit)
- **q!**: close the file without saving
- **w file**: save the file with the name file
- **e file**: opens the file named file

The Routing Table

The Cyclades-TS has a static routing table that can be seen using the commands `route`.
Appendix A - Linux

or

```
netstat -rn
```

The file /etc/network/st_routes shown in Figure 4.5 is the Cyclades-TS’s method for configuring static routes. Routes should be added to the file (which is a script run when the Cyclades-TS is initialized) or at the prompt (for temporary routes) using the following syntax:

```
```

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[add</td>
<td>del]</td>
</tr>
<tr>
<td>[-net</td>
<td>-host]</td>
</tr>
<tr>
<td>target</td>
<td>target is the IP address of the destination host or network</td>
</tr>
<tr>
<td>netmask</td>
<td>the tag netmask and a mask are necessary only when subnetting is used.</td>
</tr>
<tr>
<td>nt_msk</td>
<td>Otherwise, a mask appropriate to the target is assumed. nt_msk must be</td>
</tr>
<tr>
<td></td>
<td>specified in dot notation.</td>
</tr>
<tr>
<td>gw gt_way</td>
<td>specifies a gateway, when applicable. gt_way is the IP address or hostname</td>
</tr>
<tr>
<td></td>
<td>of the gateway.</td>
</tr>
<tr>
<td>interf</td>
<td>the interface to use for this route. Must be specified if a gateway is not.</td>
</tr>
<tr>
<td></td>
<td>When a gateway is specified, the operating system determines which interface</td>
</tr>
<tr>
<td></td>
<td>is to be used.</td>
</tr>
</tbody>
</table>

ssh - The Secure Shell Session

ssh is a command interface and protocol often used by network administrators to connect securely to a remote computer. ssh replaces its non-secure counterpart rsh and rlogin. There are two versions of the protocol, ssh and ssh2. The Cyclades-TS offers both.

The command to start an ssh client session from a **Unix** workstation is

```
ssh -t <user>@<hostname>
```

where

```
<user> = <username>:ttySnn or
<username>:socket_port or
```
<username>:ip_addr or
<username>:serverfarm

Note: “serverfarm” is a physical port alias. It can be configured in the file pslave.conf.

An example:

username: cyclades
TS1000 IP address: 192.168.160.1
host name: ts1000
servername for port 1: file_server

ttyS1 addressed by IP 10.0.0.1 or socket port 7001. The various ways to access the server connected to the port are:

```
ssh -t cyclades:ttyS1@ts1000
ssh -t cyclades:7001@ts1000
ssh -t cyclades:10.0.0.1@ts1000
ssh -t cyclades:file_server@ts1000
ssh -t -l cyclades:10.0.0.1
```

Note that either -l or @ are used, but not both. For ssh2, the -2 flag is used:

```
ssh -t -2 cyclades:7001@ts1000
```

To log in to a port that does not require authentication, the username is not necessary:

```
ssh -t -2 :ttyS1@ts1000
```
The Process Table
The process table shows which processes are running. Type ps -a to see a table similar to that below.

<table>
<thead>
<tr>
<th>PID</th>
<th>Uid</th>
<th>Gid</th>
<th>State</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>root</td>
<td>root</td>
<td>S</td>
<td>/sbin/inetd</td>
</tr>
<tr>
<td>31</td>
<td>root</td>
<td>root</td>
<td>S</td>
<td>/sbin/sshd</td>
</tr>
<tr>
<td>32</td>
<td>root</td>
<td>root</td>
<td>S</td>
<td>/sbin/cy_ras</td>
</tr>
<tr>
<td>36</td>
<td>root</td>
<td>root</td>
<td>S</td>
<td>/sbin/cy_wdt_led wdt led</td>
</tr>
<tr>
<td>154</td>
<td>root</td>
<td>root</td>
<td>R</td>
<td>/ps -a</td>
</tr>
</tbody>
</table>

To restart the cy_ras process use its process ID or execute the command:

```bash
signal_ras hup
```

This executes the ps command, searches for the cy_ras process id, then sends the signal HUP to the process, all in one step. Never kill cy_ras with the signals -9 or SIGKILL.

NTP Client Functionality
In order for the Cyclades-TS to work as a NTP (Network Timer Protocol) client, the IP address and either hostname or domain name of the NTP server must be set in the file /bin/ex_ntpclient.

The Crond Utility
To use crond, first create the following two files for every process that it will execute:
1. crontab - the file that specifies frequency of execution, name of shell script, etc. should be set using the traditional crontab file format.
2. script shell - a script file with the Linux commands to be executed.
Next, create a line in the file `/etc/crontab_files` for each process to be run. Each line must contain the three items:

- status (active or inactive) - if this item is not active, the script will not be executed.
- user - the process will be run with the privileges of this user, who must be a valid local user.
- source - pathname of the crontab file.

When the `/etc/crontab_files` file contains the following line:

```
active root /etc/tst_cron.src
```

and the `/etc/tst_cron.src` file contains the following line:

```
0-59 * * * * /etc/test_cron.sh
```

`crond` will execute the script listed in `tst_cron.sh` with root privileges each minute.

Example files are in the `/etc` directory.

The next step is to update the system with the modified data in the files above. Make sure the file named `/etc/config_files` contains the names of all files that should be saved to flash. Next, the command `saveconf`, which reads the `/etc/config_files` file, should then be run. `saveconf` copies all the files listed in the file `/etc/config_files` from the ramdisk to `/proc/flash/script`. See step 4 in chapter 4 for more details.

The DHCP (Dynamic Host Configuration Protocol) Client

(Note: This feature is only available for firmware versions 1.2.x and above)

DHCP is a protocol that allows network administrators to assign IP addresses automatically to network devices. Without DHCP (or a similar protocol like BOOTP), each device would have to configured manually. DHCP automatically sends a new IP address to a connected device when it is moved to another location on the network. DHCP uses the concept of a fixed time period during which the assigned IP address is valid for the device it was assigned for. This “lease” time can vary for each device. A short lease time can be used when there are more devices than available IP numbers. For more information, see RFC 2131.
To activate the DHCP client on the Ethernet Interface, set the global parameter conf.dhcp_client to 1. All other parameters related to the Ethernet Interface (conf.eth_ip, etc.) should be commented. If the IP addresses of the Cyclades-TS or the default gateway are changed, the Cyclades-TS will adjust its routing table accordingly.

To inactivate the DHCP client, set the parameter conf.dhcp_client to 0. Do not forget to uncomment the Ethernet parameters mentioned in the previous paragraph.

Two files are related to DHCP:
/bin/Handle_dhcp - the script which is run by the DHCP client each time an IP address negotiation takes place.
/etc/network/dhcpcd_cmd - command which activates the DHCP client (used by the cy_ras program). Its factory set contents are:
/sbin/dhcpcd -c /sbin/handle_dhcp

The dhcpcd command has other options which can be used on the command line. They are:

-D This option forces dhcpcd to set the domain name of the host to the domain name parameter sent by the DHCP server. The default option is to NOT set the domain name of the host to the domain name parameter sent by the DHCP server.

-H This option forces dhcpcd to set the host name of the host to the hostname parameter sent by the DHCP server. The default option is to NOT set the host name of the host to the hostname parameter sent by the DHCP server.

-R This option prevents dhcpcd from replacing the existing /etc/resolv.conf file.

The user should not modify the -c /sbin/handle_dhcp option.

Packet Filtering using ipchains

(Note: This feature is only available for firmware versions 1.2.x and above)
The Cyclades-TS uses the Linux utility ipchains to filter IP packets entering, leaving and passing through its interfaces. An ipchains tutorial is beyond the scope of this manual. For more information on ipchains, see the ipchains man page (not included with the Cyclades-TS) or the howto: http://netfilter.filewatcher.org/ipchains/HOWTO.html.

The syntax of the ipchains command is:

```
```

where **command** is one of the following:

A - Add a condition or rule to the end of the chain. Note that the order in which a condition appears in a chain can modify its application and the first rule added to a chain is processed first, etc.

D - Delete a condition from the chain. The condition must match exactly with the command's arguments to be deleted.

R - Replace a condition in the chain.

I - Insert a condition in a specified location in the chain.

L - List all conditions in the chain.

F - Flush (remove) all conditions in the chain.

N - Create a new chain.

X - Deletes a user-created chain

P - Policy applied for default handling

chain is one of the following:

input - filters incoming packets

output - filters outgoing packets

forward - filters packets which are not created by the Cyclades-TS and are not destined to the Cyclades-TS

user created chain - a previously defined (or in the process of being defined) chain created using the N command described above.

The output chain controls which packets are sent. A packet can be accepted by the input chain, but then rejected by the output chain. Likewise, the forward chain controls which packets will be routed. The input chain controls
incoming packet filtering. The packet is either destined for the router or for another computer. In the latter case, the packet is processed by the forward chain. Packets that pass through the forward chain will then be processed by the output chain.

source and **destination** have the following format:

```
[!] address[/mask] [!] [port[:port]]
```

! : reverses the definition, resulting in the opposite.
address : host or network IP
port : defines a specific port
port:port : defines a range of ports
If a source or destination is not specified then 0.0.0.0/0 is used.

protocol is one of the following:
tcp, udp, icmp, all or a protocol number (see the file /etc/protocols for a list).

target is one of the following:
ACCEPT
DENY
the name of another chain

interface is:
eth0 (the Ethernet interface is the only option on the Cyclades-TS) Lists do not need to be associated to an interface, so this option may be omitted.

To save changes made using the ipchains command, execute fwset. This command will save the filter configuration in the file /etc/network/firewall and then save the file in flash memory.

To delete the changes made (before fwset is executed) execute fwset restore to return to the lists previously saved in /etc/network/firewall. Only the lists previously saved using fwset will then be defined. This command is executed at boot to invoke the last configuration saved.
Another option is to edit the file /etc/network/firewall (or another file) directly, following the syntax defined in the file itself. If the file is edited in this way, the command fwset cannot be used to save and restore the configuration. Use

```
ipchains-save > file_name to save the lists in file_name
updatefiles file_name to save file_name to flash memory
ipchains-restore < file_name to restore the lists to the configuration in file_name
```

An example of the use of ipchains for a console access server

Referring to Fig 4.5

If the administrator wishes to restrict access to the consoles connected to the Cyclades-TS to a user on the workstation with IP address 200.200.200.4, a filter can be set up as shown below.

```
ipchains -P input ACCEPT
ipchains -P output ACCEPT
ipchains -P forward ACCEPT
ipchains -A input -p tcp -s ! 200.200.200.4 -d 0.0.0.0/0 23 -j DENY
ipchains -A input -p tcp -s ! 200.200.200.4 -d 0.0.0.0/0 22 -j DENY
```

ts_menu Script to Simplify telnet and ssh Connections

(Note: This feature is only available for firmware versions 1.2.x and above)

The ts_menu script can be used to avoid typing long telnet or ssh commands. It presents a short menu with the names of the servers connected to the serial ports of the Cyclades-TS. The server is selected by its corresponding number. ts_menu must be executed from a local session: via console, telnet, ssh, dumb terminal connected to a serial port, etc.

Only ports configured for console access (protocols socket_server or socket_ssh) will be presented. An example is:
selecting option 2 will telnet/ssh to the server snoopy. The names defined using the parameter serverfarm are used to make up the list. When no name is configured, ttyS<N> is used where N is the port number.

the ts_menu script has the following line options:
- **p** : Displays Ethernet IP Address and TCP port instead of server names

```
Cyclades-TS: Serial Console Server Connection menu
1 209.81.55.79 7001 2 209.81.55.79 7002 3 209.81.55.79 7003
4 209.81.55.79 7004 5 209.81.55.79 7005 6 209.81.55.79 7006
Type 'q' to quit, a valid option [1-6], or anything else to refresh :
```

- **i** : Displays Local IP assigned to the serial port instead of server names

```
Cyclades-TS: Serial Console Server Connection menu
1 192.168.1.101 2 192.168.1.102 3 192.168.1.103 4 192.168.1.104
5 192.168.1.105 6 192.168.1.106
Type 'q' to quit, a valid option [1-6], or anything else to refresh :
```

- **u <name>** : Username to be used in ssh/telnet command. The default username is that used to log in to the Cyclades-TS.
- **h** : lists script options
APPENDIX B HARDWARE SPECIFICATIONS

This chapter has all the information you need to quickly and successfully purchase or build RS-232 cabling. It focuses on information related to the Cyclades-TS, but most of the information applies to any RS-232 cabling.

The RS-232 Standard

RS-232C, EIA RS-232, or simply RS-232 refer to a standard defined by the Electronic Industries Association in 1969 for serial communication. More than 30 years later, we have found more applications for this standard than its creators could have imagined. Almost all electronic devices nowadays have serial communication ports.

RS-232 was defined to connect Data Terminal Equipment, (DTE, usually a computer or terminal) to Data Communication Equipment (DCE, usually a modem):

\[\text{DTE} \rightarrow \text{RS-232} \rightarrow \text{DCE} \rightarrow \text{communication line} \rightarrow \text{DCE} \rightarrow \text{RS-232} \rightarrow \text{DTE} \]

RS-232 is now mostly being used to connect DTE devices directly (without modems or communication lines in between). While that was not the original intention, it is possible with some wiring tricks. The relevant signals (or wires) in a RS-232 cable, from the standpoint of the computer (DTE), are:

- **Receive Data (RxD) and Transmit Data (TxD)** – The actual data signals
- **Signal Ground (Gnd)** - Electrical reference for both ends
- **Data Terminal Ready (DTR)** - Indicates that the computer (DTE) is active
- **Data Set Ready (DSR)** - Indicates that the modem (DCE) is active.
- **Data Carrier Ready (DCD)** - Indicates that the connection over the communication line is active
- **CTS (Clear to Send, an input)** – Flow control for data flowing from DTE to DCE
- **RTS (Request to Send, an output)** – Flow control for data flowing from DCE to DTE

Not all signals are necessary for every application, so the RS-232 cable may not need all 7 wires. The RS-232 interface defines communication parameters such as parity, number of bits per character, number of stop-bits and the baud rate. Both sides must be configured with the same parameters. That is the first thing to...
verify if you think you have the correct cable and things still do not work. The most common configuration is 8N1 (8 bits of data per character, no parity bit included with the data, 1 stop-bit to indicate the end of a character). The baud rate in a RS-232 line translates directly into the data speed in bits per second (bps). Usual transmission speeds range between 9600 bps and 1920 bps (used in most automation and console applications) to 115,200 bps (used by the fastest modems).

Cable Length

The original RS-232 specifications were defined to work at a maximum speed of 19,200 bps over distances up to 15 meters (or about 50 feet). That was 30 years ago. Today, RS-232 interfaces can drive signals faster and through longer cables.

As a general rule, consider:
- If the speed is lower than 38.4 kbps, you are safe with any cable up to 30 meters (100 feet)
- If the speed is 38.4 bps or higher, cables should be shorter than 10 meters (30 feet)
- If your application is outside the above limits (high speed, long distances), you will need better quality (low-impedance, low-capacitance) cables.

Successful RS-232 data transmission depends on many variables that are specific to each environment. The general rules above are empirical and have a lot of safety margins built-in.

Connectors

The connector traditionally used with RS-232 is the 25-pin D-shaped connector (DB-25). Most analog modems and most older computers and serial equipment use this connector. The RS-232 interface on DB-25 connector always uses the same standard pin assignment.

The 9-pin D-shaped connector (DB-9) saves some space and is also used for RS-232. Most new PC COM ports and serial equipment (specially when compact size is important) uses this connector. RS-232 interfaces on DB-9 connectors always use the same standard pin assignment.

The telephone-type modular RJ-45 plug and jack are very compact, inexpensive and compatible with the phone and Ethernet wiring systems present in most buildings and data centers. Most networking equipment and new
servers use RJ-45 connectors for serial communication. Unfortunately there is no standard RS-232 pin assignment for RJ-45 connectors. Every equipment vendor has its pin assignment. Most connectors have two versions. The ones with pins are said to be “male” and the ones with holes are said to be “female”.

<table>
<thead>
<tr>
<th>RS-232 Signal</th>
<th>Name/Function (Input/Output)</th>
<th>DB-25 pins (Standard)</th>
<th>DB-9 pins (Standard)</th>
<th>RJ-45 pins (Cyclades)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>Safety Ground</td>
<td>1</td>
<td>Shell</td>
<td>Shell</td>
</tr>
<tr>
<td>TxD</td>
<td>Transmit Data (O)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>RxD</td>
<td>Receive Data (I)</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>DTR</td>
<td>Data Terminal Ready (O)</td>
<td>20</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Set Ready (I)</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>DCD</td>
<td>Data Carrier Detect (I)</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>RTS</td>
<td>Request To Send (O)</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear To Send (I)</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Straight-Through vs. Crossover Cables

The RS-232 interface was originally intended to connect a DTE (computer, printer and other serial devices) to a DCE (modem) using a straight-through cable (all signals on one side connecting to the corresponding signals on the other side one-to-one). By using some “cabling tricks”, we can use RS-232 to connect two DTEs as is the case in most modern applications.

A crossover (a.k.a. null-modem) cable is used to connect two DTEs directly, without modems or communication lines in between. They data signals between the two sides are transmitted and received and there are many variations on how the other control signals are wired. A “complete” crossover cable would connect TxD with RxD, DTR with DCD/DSR, and RTS with CTS on both sides. A “simplified” crossover cable would cross TxD and RxD and locally short-circuit DTR with DCD/DSR and RTS with CTS.

Which Cable Should be Used

First, look up the proper cable for your application in the table below. Next, purchase standard off-the-shelf
cables from a computer store or cable vendor. For custom cables, refer to the cable diagrams to build your own cables or order them from Cyclades or a cable vendor.

<table>
<thead>
<tr>
<th>To Connect To</th>
<th>Use Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE DB-25 Female (standard)</td>
<td>Cable 1 – RJ-45 to DB-25 M straight-through (Custom)</td>
</tr>
<tr>
<td>- Analog Modems</td>
<td>This custom cable can be ordered from Cyclades or other cable vendors. A</td>
</tr>
<tr>
<td>- ISDN Terminal Adapters</td>
<td>sample is included with the product ("straight-through").</td>
</tr>
<tr>
<td>DTE DB-25 Male or Female (standard)</td>
<td>Cable 2 – RJ-45 to DB-25 F/M crossover (Custom)</td>
</tr>
<tr>
<td>- Serial Terminals</td>
<td>This custom cable can be ordered from Cyclades or other cable vendors.</td>
</tr>
<tr>
<td>- Old PC COM ports</td>
<td>A sample is included with the products ("Console").</td>
</tr>
<tr>
<td>- Most serial printers</td>
<td></td>
</tr>
<tr>
<td>- Some Console Ports</td>
<td></td>
</tr>
<tr>
<td>- Most automation devices</td>
<td></td>
</tr>
<tr>
<td>DTE DB-9 Male or Female (standard)</td>
<td>Cable 3 – RJ-45 to DB-9 F/M crossover (custom)</td>
</tr>
<tr>
<td>- Newer PC COM ports</td>
<td>This custom cable can be ordered from Cyclades or other cable vendors.</td>
</tr>
<tr>
<td>- Most Mice and pointing devices</td>
<td>A sample is included with the products (console).</td>
</tr>
<tr>
<td>- Some automation devices</td>
<td></td>
</tr>
<tr>
<td>DTE RJ-45 Cyclades (custom)</td>
<td>Cable 4 – RJ-45 to RJ-45 crossover (custom)</td>
</tr>
<tr>
<td>- All Cyclades Console Ports</td>
<td>This custom cable can be ordered from Cyclades or cable vendors using</td>
</tr>
<tr>
<td></td>
<td>the provided wiring diagram.</td>
</tr>
<tr>
<td>DTE RJ-45 Netra (custom)</td>
<td>Cable 5- RJ-45 to RJ-45 crossover (custom)</td>
</tr>
<tr>
<td>- Sun Netra Console Ports</td>
<td>This custom cable can be ordered from Cyclades or cable vendors using</td>
</tr>
<tr>
<td>- Cisco Console Ports</td>
<td>the provided wiring diagram.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cable Diagrams

Before using the following cable diagrams refer to the tables above to select the correct cable for your application. Sometimes, crossover cables are wired slightly differently depending on the application. A “complete” crossover cable would connect the TxD with RxD, DTR with DCD/DSR, and RTS with CTS across both sides. A “simplified” crossover cable would cross TxD and RxD and locally short-circuit DTR with DCD/DSR and RTS with CTS.
Most of the diagrams in this document show the “complete” version of the crossover cables, with support for modem control signals and hardware flow control. Applications that do not require such features have just to configure NO hardware flow control and NO DCD detection on their side. Both ends should have the same configuration for better use of the complete version of the cables.

Cable #1: Cyclades RJ-45 to DB-25 Male, Straight Through
Application: It connects Cyclades products (serial ports) to modems and other DCE RS-232 devices.

<table>
<thead>
<tr>
<th>RJ-45 Male</th>
<th>DB-25 Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD 3</td>
<td>TxD 2</td>
</tr>
<tr>
<td>RxD 6</td>
<td>RxD 3</td>
</tr>
<tr>
<td>Gnd 4</td>
<td>Gnd 7</td>
</tr>
<tr>
<td>DTR 2</td>
<td>DTR 20</td>
</tr>
<tr>
<td>DSR 8</td>
<td>DSR 6</td>
</tr>
<tr>
<td>DCD 7</td>
<td>DCD 8</td>
</tr>
<tr>
<td>RTS 1</td>
<td>RTS 4</td>
</tr>
<tr>
<td>CTS 5</td>
<td>CTS 5</td>
</tr>
</tbody>
</table>
Cable #2: Cyclades RJ-45 to DB-25 Female/Male, Crossover

Application: It connects Cyclades products (serial ports) to console ports, terminals, printers and other DTE RS-232 devices.

![Cable Diagram](image)

<table>
<thead>
<tr>
<th>RJ-45 Custom</th>
<th>DB-25 F/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD 3</td>
<td>RxD 3</td>
</tr>
<tr>
<td>RxD 6</td>
<td>TxD 2</td>
</tr>
<tr>
<td>Gnd 4</td>
<td>Gnd 7</td>
</tr>
<tr>
<td>DTR 2</td>
<td>DSR 6</td>
</tr>
<tr>
<td>DSR 8</td>
<td>DCD 8</td>
</tr>
<tr>
<td>DCD 7</td>
<td>DTR 20</td>
</tr>
<tr>
<td>RTS 1</td>
<td>CTS 5</td>
</tr>
<tr>
<td>CTS 5</td>
<td>RTS 4</td>
</tr>
</tbody>
</table>
Cable #3: Cyclades RJ-45 to DB-9 Female, Crossover

Application: It connects Cyclades products (serial ports) to console ports, terminals, printers and other DTE RS-232 devices.

![Diagram of RJ-45 to DB-9 Female cable, showing pin connections]

<table>
<thead>
<tr>
<th>RJ-45 Custom</th>
<th>DB-9 Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD 3</td>
<td>RxD 2</td>
</tr>
<tr>
<td>RxD 6</td>
<td>TxD 3</td>
</tr>
<tr>
<td>Gnd 4</td>
<td>Gnd 5</td>
</tr>
<tr>
<td>DTR 2</td>
<td>DSR 6</td>
</tr>
<tr>
<td>DSR 8</td>
<td>DCD 1</td>
</tr>
<tr>
<td>DCD 7</td>
<td>DTR 4</td>
</tr>
<tr>
<td>RTS 1</td>
<td>CTS 8</td>
</tr>
<tr>
<td>CTS 5</td>
<td>RTS 7</td>
</tr>
</tbody>
</table>
Cable #4: Cyclades RJ-45 to Cyclades RJ-45, Crossover

Application: Usually used to connect two ports of a Cyclades product ("loopback") for testing purposes.
Cable #5: Cyclades RJ-45 to Netra RJ-45, Crossover

Usually used in console management applications to connect Cyclades products to a Sun Netra server or to a Cisco product.

![Cable Diagram](image-url)

<table>
<thead>
<tr>
<th>RJ-45 Custom</th>
<th>RJ-45 Netra</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD 3</td>
<td>RxD 6</td>
</tr>
<tr>
<td>RxD 6</td>
<td>TxD 3</td>
</tr>
<tr>
<td>Gnd 4</td>
<td>Gnd 4</td>
</tr>
<tr>
<td>DTR 2</td>
<td>DSR 7</td>
</tr>
<tr>
<td>DCD 7</td>
<td>DTR 2</td>
</tr>
<tr>
<td>RTS 1</td>
<td>CTS 8</td>
</tr>
<tr>
<td>CTS 5</td>
<td>RTS 1</td>
</tr>
</tbody>
</table>
APPENDIX C SAMPLE PSLAVE.CONF FILES
The pslave.conf file with all possible parameters and their descriptions is presented first. The pslave.conf files for the three examples configured in chapter 4 follow.

The Complete pslave.conf File Provided with the Cyclades-TS

```
# pslave.conf  Sample server configuration file.
# The Terminal Server uses a virtual terminal concept. Virtual terminals are named s1, s2, etc. Every virtual terminal should have a related physical device tty (without the "/dev/"). The tty parameter must be configured and must be unique for each virtual terminal.
#
# There two types of parameters:
# 1) Global parameters
#    These parameters have the prefix "conf." Example of global parameters are ethernet ip address, etc.
# 2) Terminal Parameters.
#    These parameters have prefixes "all.", "s1.", "s2.", etc.
#    The "all." entries are used as a template for all virtual terminals. Setting all.speed to 9600 will set all virtual terminal (s1, s2, s3, etc.) speeds to 9600.
#    Note that you can change the "all." settings one by one.
#    If the parameter "s4.speed 19200" appears later in the file, all terminals except s4 will have speed 9600 bps and "s4" will have speed 19200 bps.
#
# Expansion Variables
# A list of format strings used by some parameters is provided here for reference.
```
%l: login name
%L: stripped login name
%p: NAS port number
%P: protocol
%b: port speed
%i: local IP
%j: remote IP
%1: first byte (MSB) of remote IP
%2: second byte of remote IP
%3: third byte of remote IP
%4: fourth (LSB) byte of remote IP
%c: connect-info
%m: netmask
%t: MTU
%r: MRU
%I: idle timeout
%T: session timeout
%h: hostname
%\: \%

Generic SAMPLE:
all async ports at 9600 bps, 8N1
Eth IP address 192.169.160.10/24 (MTU=1500)
protocol socket_server
host IP 192.168.160.8/24
syslogd IP 192.168.160.1
Radius Server IP 192.168.160.3 (authentication and accounting)
authentication radius
#
#
Ethernet configuration.
#
These parameters should only be configured in the file
/etc/network/ifcfg_eth0 _IF_ the customer will not be using the
cy_ras/portslave applications. If the cy_ras/portslave applications are _NOT_
used put all ifconfig commands for the ethernet directly in the
/etc/network/ifcfg_eth0.
#
The cy_ras application OVERWRITES the ifcfg_eth0 file with the
values configured here.
The Cyclades-TS can request all of its ethernet parameters to a DHCP server.
The administrator can activate the dhcp client with more options changing
the file /etc/network/dhcpcd_cmd.
#
#conf.dhcp_client 1
conf.eth_ip 192.168.160.10
conf.eth_mask 255.255.255.0
conf.eth_mtu1500

Secondary IP address of ethernet
#
#conf.eth_ip_alias 192.168.161.10
#conf.eth_mask_alias 255.255.255.0

Remote Network File System where data buffering will be written instead
of the default directory '/var/run'. The directory tree to which the
file will be written must be NFS-mounted.
#
If data buffering is turned on for port 1, for example, the data will be
stored in /tmp/ts_data_buffer/ttyS1.data on the machine with IP address
192.168.160.11. The remote host must have NFS installed and the
administrator
must create, export and allow reading/writing to this directory.
The size of this file is not limited by the value of the parameter
s1.data_buffering, though the value cannot be zero since a zero value turns
off data buffering.
#
#conf.nfs_data_buffering 192.168.160.11:/tmp/ts_data_buffer

Lock directory - The lock directory is /var/lock for the Cyclades-TS.
It should not be changed unless the user decides to customize the
operating system.
#
conf.lockdir/var/lock
#
Location of the rlogin binary that accepts the "-i" flag.
#
conf.rlogin /usr/local/bin/rlogin-radius
#
Location of our patched pppd with Radius linked in.
#
conf.pppd /usr/local/sbin/pppd-radius
#
Location of the telnet utility. This can be the system telnet. (Optional)
#
conf.telnet /bin/telnet
#
Location of ssh utility. This can be the system SSH. (Optional)
#
conf.ssh /bin/ssh
#
This parameter is only necessary when authentication is being
performed for a port. When set to one, it is possible to log
in to the Terminal Server directly
by placing a "!" before your login name, then using your normal
password. This is useful if the Radius authentication server is down.
#
conf.locallogins 1
#
Syslog server: syslog is the IP address of a remote syslog daemon.
facility
is a value from 0 to 7 which is sent to the syslog server to
indicate in which file the syslog messages should be stored.
The file /etc/syslog.conf on the syslog server contains a mapping
between facility numbers and server log files.
#
conf.syslog 192.168.160.1
#
Syslog facility for portslave
conf.facility 7
#
Syslog facility for Data Buffering
conf.DB_facility 7
Speed. All ports are set to 9600 baud rate, 8 bits, No parity, 1 stop bit.
These values can be changed port by port later in the file.
#
all.speed 9600
all.datasize 8
all.stopbits 1
all.parity none

#
Syslog server message level. An integer between 0 and 7. Zero: does not send
syslog messages to the syslog server.
#
all.syslog_level 4

#
Syslog Console message level. An integer between 0 and 7. Zero: does not send
syslog messages to the console.
#
all.console_level 4

#
Authentication type - either "local", "radius", "none", "remote"
"local/radius", "radius/local", or "RadiusDownLocal".
#
all.authtype radius

Authentication host and accounting host. Two of each can be configured
per port. The first is tried 'radretries' times before the
second is tried. If 'radretries' is not configured, 5 is used by default.
The parameter 'radtimeout' sets the timeout per query in seconds.
#
all.authhost1 192.168.160.3
all.accthost1 192.168.160.3
all.radtimeout 3
all.radretries 5
#all.authhost2 192.168.160.4
#all.accthost2 192.168.160.4
#
The shared secret used by RADIUS.
all.secret cyclades
#
Default protocol.
#
Valid values are "login", "rlogin", "telnet",
"ssh", "ssh2", "slip", "cslip", "ppp", "ppp_only", "socket_client",
"socket_server" and "socket_ssh".
#
ppp_only ==> PPP over leased lines (only authentication PAP/CHAP)
ppp ==> PPP with terminal post dialing (Auto detect PPP)
#
all.protocol socket_server
#
Default ip address of linux host to which the terminals will connect.
Used by the protocols rlogin, ssh, socket_client, etc.
all.host 192.168.160.8
#
IP Address assigned to the serial port.
The '+' after the value causes the interfaces to have
consecutive ip addresses. Ex. 192.168.1.101, 192.168.1.107, etc.
#
The IP number of a port is used when the RADIUS
server does not send an IP number, or if it tells us to use a dynamic IP no.
#
all.ipno 192.168.1.101+
all.netmask 255.255.255.255
#
Maximum reception/transmission unit size for the port
all.mtu 1500
all.mru 1500

all.issue \\
 TSLINUX - Portslave Internet Services\\n \\
 Welcome to terminal server %h port S%p \\
 \\
 \\
all.prompt %h login:

all.term vt100

all.sysutmp 1
all.syswtmp 0
all.utmpfrom "%p:%P.%3.%4"

all.initchat TIMEOUT 10 \
" \d\l\dATZ \n # OK\r\n-ATZ-OK\r\n " \n # TIMEOUT 10 \n " " ATM0 \n # OK\r\n " " \n # TIMEOUT 3600 \n # RING "" \n # STATUS Incoming %p:I.HANDSHAKE \n " " ATA \n # TIMEOUT 60 \n # CONNECT@ "" \n # STATUS Connected %p:I.HANDSHAKE

Serial port flow control:
hard - hardware, rts/cts
soft - software, CTRL-S / CTRL-Q
none.

all.flow hard

DCD signal (sets the tty parameter CLOCAL). Valid values are 0 or 1.
In a socket session, if all.dcd=0, a connection request (telnet or
ssh) will be accepted regardless of the DCD signal and the connection
will not be closed if the DCD signal is set to DOWN.
In a socket connection, if all.dcd=1 a connection request will be
accepted only if the DCD signal is UP and the connection (telnet or
ssh) will be closed if the DCD signal is set to DOWN.

all.dcd 1

PPP options - used if a PPP session is autodetected.
Note that mru and mtu are both set to the MTU setting.

#all.autoppp%i:%j novj
 proxyarp modem asyncmap 000A0000
 noipx noccp login auth require-pap refuse-chap
 mtu %t mru %t
 ms-dns 192.168.160.5 ms-dns 0.0.0.0
 plugin /usr/lib/libpsr.so
PPP options - User already authenticated and service type is PPP.
#all.pppopt %i:%j novj \
 proxyarp modem asyncmap 000A0000 \
 noipx noccp mtu %t mru %t netmask %m \
 idle %I maxconnect %T \
 ms-dns 192.168.160.5 ms-dns 0.0.0.0 \
 plugin /usr/lib/libpsr.so

When not set to zero, this parameter sets the wait for a TCP connection
keep-alive timer. If no traffic passes through the Terminal Server for
this period of time, the Terminal Server will send a modem status message
to the remote device to see if the connection is still up.
#all.poll_interval 0

This defines an alternative labeling system for the Terminal Server ports.
This parameter is used by the protocols telnet, socket_client and
socket_server. It is mandatory if the protocol is socket_server, otherwise
23 will be used.
The '+' after the numerical value causes the interfaces to be numbered
consecutively. Ex. 7001, 7002, 7003, etc.
#all.socket_port 7001+

Data buffering configuration
A non-zero value activates data buffering. A file (/var/run/ttyS#.data)
is created on the Cyclades-TS and all data received from the port is
captured. The file contains a maximum of 1024k, which is overwritten each
time the maximum is reached. This file can be viewed using the normal Unix
tools (cat, vi, more, etc.).
#all.data_buffering 0
When non-zero, the contents of the data buffer are sent to the syslog
server every time a quantity of data equal to this parameter is collected.
[40 to 255 recommended]
#
all.syslog_level should be greater than or equal to 5, and data_buffering
non-zero for syslog generation.
#
all.syslog_buffering 0

#
Show Data buffering menu options if parameter is set to zero
MENU:
"A non-empty Data Buffering File was found. Choose which action
should be taken ((I)gnore, (D)isplay, (E)rase or (S)how and erase) :"
#
#all.dont_show_DBmenu 1

#
Send Break to the TTY when this string is received (ssh only).
#
all.break_sequence ~break

#
Authentication of Radius users registered without passwords
#
When enabled (value 1) and a user registered in
the Radius database with a blank password tries to log in, the user
is authenticated. This is a very weak level of security since
a user would only need to know that a particular username exists.
This does not affect Radius users registered with passwords.
#
all.radnullpass 0

#
Automatic User Definition (more useful when used to a specific port)
#
This parameter is only used if the port is configured as a Terminal Server
(login, telnet, rlogin, ssh and ssh2) and authentication type 'none'.
#
#all.userauto edson
Port access restriction (more useful when used to a specific port).
A single comma and spaces/tabs may be used between names.
A comma may not appear between the ! and the first user name.
The users may be local or Radius.
#
In this example, the users joe and mark CANNOT access any serial port
all.users ! joe, mark
#
In this example, ONLY the users joe and mark CAN access any serial port
all.users joe, mark

Serverfarm is an alias name for a server connected to the Cyclades-TS through one of its ports (only useful if assigned to a specific port).
This alias will only be used if the port is configured as "socket_ssh".
The value entered here should be the same used in the ssh command. Ex.
ssh -t <username>:@<tsname> or
ssh -t -l <username>:@<tsname> <tsname>
s1.serverfarm server_connected_to_serial1

Snif session mode (in, out, i/o). With this parameter the user can select which data will be sent to the monitor. The default is "out".
all.sniff_mode out

Users that are allowed to sniff sessionsI (administrator). This field has the same format "all.users", but the '!' should be used used with PRECAUTION.
In this example, ONLY the users joe, mark, and peter CAN access any serial port (to create first session) but ONLY the user peter can sniff or cancel another session.
all.users joe, mark
#all.admin_users peter

#
Port-specific parameters
#
s1.tty ttyS1
s2.tty ttyS2
s3.tty ttyS3
s4.tty ttyS4
s5.tty ttyS5
s6.tty ttyS6
s7.tty ttyS7
s8.tty ttyS8
s9.tty ttyS9
s10.tty ttyS10
s11.tty ttyS11
s12.tty ttyS12
s13.tty ttyS13
s14.tty ttyS14
s15.tty ttyS15
s16.tty ttyS16

for TS2000 uncomment s17 through s32
#s17.tty ttyS17
#s18.tty ttyS18
#s19.tty ttyS19
#s20.tty ttyS20
#s21.tty ttyS21
#s22.tty ttyS22
#s23.tty ttyS23
#s24.tty ttyS24
#s25.tty ttyS25
#s26.tty ttyS26
#s27.tty ttyS27
#s28.tty ttyS28
#s29.tty ttyS29
#s30.tty ttyS30
#s31.tty ttyS31
#s32.tty ttyS32
The `pslave.cas` File Provided With the Cyclades-TS for the Console Access Server Example

```plaintext
# # pslave.conf Sample server configuration file. # # Console Access Server Profile #

conf.eth_ip     200.200.200.1
conf.eth_mask   255.255.255.0
conf.eth_mtu1500
#conf.nfs_data_buffering 192.168.160.11:/tmp/ts_data_buffer
conf.lockdir/var/lock
conf.syslog     200.200.200.2
conf.facility   7

all.syslog_level 4
all.console_level 4
all.speed        9600
all.datasize     8
all.stopbits     1
all.parity       none
all.authtype     radius
all.authhost1    200.200.200.2
all.accthost1    200.200.200.2
all.radtimeout   3
all.radretries   5
all.secret       cyclades
all.ipno         192.168.1.101+
all.term         vt100
all.issue        \r\n
TSLINUX - Portslave Internet Services\n
 Welcome to terminal server %h port %p \n
all.prompt      %h login:
all.term        vt100
all.flow        hard
```
all.poll_interval 0
all.socket_port 7001+
all.protocol socket_server
all.data_buffering 0
all.syslog_buffering 0
#all.dont_show_DBmenu 1

Users joe and mark will only have access granted to the serial port ttyS2
all.users ! joe, mark

Sniff sessions will only display data sent by servers connected
to the serial port.
all.sniff_mode out

Only users peter and john can open a sniff session
all.admin_users peter, john

Port-specific parameters
#
#-----------------------------
PORT 1
#-----------------------------

s1.tty ttyS1
s1.authtype local
s1.serverfarm server_connected_serial1

#-----------------------------
PORT 2
#-----------------------------

s2.tty ttyS2
s2.users joe, mark
s2.protocol socket_ssh
#-----------------
PORT 8
#-----------------

s8.tty ttyS8
s8.protocol socket_ssh
s8.authtype none
s8.serverfarm server_connected_serial8
The `pslave.ts` File provided with the Cyclades-TS for the Terminal Server Example

```
# pslave.conf Sample server configuration file.
#
# Terminal Server Profile

conf.eth_ip     200.200.200.1
conf.eth_mask   255.255.255.0
conf.eth_mtu1500
conf.lockdir/var/lock
conf.rlogin /usr/local/bin/rlogin-radius
conf.telnet /bin/telnet
conf.ssh /bin/ssh
conf.locallogins 0
all.speed       9600
all.datasize    8
all.stopbits    1
all.parity      none
all.authtype    none
all.protocoltelnet
all.host 200.200.200.3
all.issue       \r\n
   TSLINUX - Portslave Internet Services\n
   Welcome to terminal server %h port S%p \n
   %h login:
   vt100
   hard
   23

# Users joe and mark will only have access to serial port ttyS5
# all.users ! joe, mark
```
Port-specific parameters
#
s1.tty ttyS1
s2.tty ttyS2
s2.authtype local
s2.protocol rlogin
s2.speed 19200
s2.datasize 7
s2.stopbits 2
s2.parity even
s3.tty ttyS3
s3.protocol ssh2
s3.authtype remote
s4.tty ttyS4
s4.protocol ssh
s4.authtype remote
s5.tty ttyS5
s5.users joe, mark
The *pslave.ras* File Provided With the Cyclades-TS for the Remote Access Server Example

```
#  # pslave.conf Sample server configuration file.
#  # Remote Access Server Profile
#
conf.eth_ip 200.200.200.1
conf.eth_mask 255.255.255.0
conf.eth_mtu1500
conf.lockdir/var/lock
conf.pppd /usr/local/sbin/pppd-radius
conf.syslog     200.200.200.3
conf.facility     7
all.speed       57600
all.datasize     8
all.stopbits     1
all.parity      none
all.syslog_level 4
all.console_level 4
all.authtype    radius
all.authhost1   200.200.200.2
all.accthost1   200.200.200.2
all.radtimeout  5
all.radretries  5
all.secret  cocomero
all.protocolppp
all.ipno   200.200.200.11+
all.netmask 255.255.255.255
all.mtu    1500
all.mru    1500
all.issue  \\nTSLINUX - Portslave Internet Services\\
\\
Welcome to terminal server %h port S%p \\
\\
\\
```
Cyclades-TS

all.initchat TIMEOUT 10 \
"" \d\l\dATZ \OK\r\n-ATZ-OK\r\n"" \" ATMO \OK\r\n"" TIMEOUT 3600 \RING "" \STATUS Incoming %p:I.HANDSHAKE \"" ATA \TIMEOUT 60 \CONNECT@ "" \STATUS Connected %p:I.HANDSHAKE

all.flow hard
all.dcd 1
all.autoppp %i:%j novj \proxyarp modem asyncmap 000A0000 \noipx noccp login auth require-pap refuse-chap \mtu %t mru %t \plugin /usr/lib/libpsr.so

all.pppopt %i:%j novj \proxyarp modem asyncmap 000A0000 \noipx noccp mtu %t mru %t netmask %m \idle %I maxconnect %T \plugin /usr/lib/libpsr.so

#
Port-specific parameters
#

#---
PORT 1 PPP dial in with terminal post dialing
#---
s1.tty ttyS1

#---
PORT 2 PPP dial in with terminal post dialing
#---
s2.tty ttyS2
s2.authtype local/radius
#---
PORT 3 PPP Leased line
#---
s3.tty ttyS3
s3.protocol ppp_only
s3.pppopt %i:%j novj \
 proxyarp modem asyncmap 000A0000 \
 noipx noccp login auth require-pap refuse-chap \
 mtu %t mru %t \
 plugin /usr/lib/libpsr.so
s3.initchat ""
s3.issue ""
APPENDIX D CUSTOMIZATION

Everything related to the Cyclades-TS can be traced back to two files: /etc/rc.sysinit and /etc/inittab. All Cyclades-TS application programs are started during boot by the init process. The related lines in the /etc/inittab file are listed below:

```bash
# System initialization.
::sysinit:/etc/rc.sysinit

# Single user shell
#console::respawn:/bin/sh < /dev/console > /dev/console 2> /dev/console
ttyS0::respawn:/sbin/getty -p ttyS0 ansi
::respawn:/sbin/cy_wdt_led wdt led

# Cyclades RAS
::once:/sbin/cron
::once:/sbin/snmpd
::once:/sbin/cy_buffering
::once:/sbin/cy_ras
::once:/sbin/sshd -f /etc/ssh/sshd_config
::once:/sbin/ex_ntpclient
::wait:/sbin/fwset restore
```

To customize the Cyclades-TS, change these lines or add others. If the /etc/inittab file is changed, edit the /etc/config_files file and add a line containing only “/etc/inittab”. Save the file and exit the editor. Save the new configuration by executing saveconf. Then, the Cyclades-TS should be turned off and then turned on again. This is necessary because the init program provided by Busybox, a tool that emulates rm, cp, etc., but uses much less space, does not support the option ‘q’.

Cyclades provides a development kit which allows changes to be made to the Cyclades-TS’s software. However, Cyclades does not provide free technical support for systems modified in this way. Any changes are the responsibility of the user.
APPENDIX E THE WEB CONFIGURATION MANAGER

An HTML server to facilitate administration and configuration of the Cyclades-TS was implemented in software v.1.3.0. To use this feature:

1. connect the Cyclades-TS to a terminal using the console cable,
2. log in to the Cyclades-TS from the terminal with root privileges,
3. change the IP address/mask/gateway using the command

 config_eth0 ip 200.200.200.1 netmask 255.255.255.0 gw 200.200.200.5

 replacing the IP numbers in the line above with IP numbers appropriate to your system.
4. Open a browser (Netscape, Internet Explorer, etc.) and type the IP address of the TS’s Ethernet interface (200.200.200.1 above). A page similar to that shown in Fig. E.1 will appear.

Type root in the username field and tslinux in the password field to use the Web Configuration Manager. Change the root password as soon as possible: the user database for the Web Configuration Manager is different than the system user database, so the root password can be different.
FIGURE E.1 MAIN PAGE OF THE WEB CONFIGURATION MANAGER
To change the password:
1. Click on the link *Web User Management-*->*Users*
2. Select the user root, then click on the *Change Password* button.
3. Type the new password twice and submit the request.
4. The next page will require a new login, type root and the new password
5. Click on the link *Web User Management-*->*Load/Save Configuration* and click on the *Save Configuration* button.
6. Then, click on the link *Administration-*->*Load/Save Configuration* and click on the *Save Configuration to flash button*.

To logout, click on the *Administration-*->*Log out* link.

The General page of the Web Configuration Manager is shown in Fig. E.2
FIGURE E.2 GENERAL PAGE OF THE WEB CONFIGURATION MANAGER
A Menu of links is provided along the left side of the page. A summary of what each link leads to is shown in the following figures.

<table>
<thead>
<tr>
<th>Link Name</th>
<th>Description of Page Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Description, Ethernet, DNS, Syslog, Name Service Access, Data Buffering.</td>
</tr>
<tr>
<td>Serial Ports</td>
<td>Configuration for the Portslave package.</td>
</tr>
<tr>
<td>Host Table</td>
<td>Table of hosts in /etc/hosts.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Static routes defined in /etc/network/st_routes.</td>
</tr>
<tr>
<td>IP Chains</td>
<td>Static Firewall Chains in /etc/network/ipchains.</td>
</tr>
<tr>
<td>Boot Configurations</td>
<td>Configuration of parameters used in the boot process.</td>
</tr>
<tr>
<td>Edit Text File</td>
<td>Tool to read and edit a configuration file.</td>
</tr>
<tr>
<td>System Users</td>
<td>Management of system users defined in /etc/passwd.</td>
</tr>
<tr>
<td>System Groups</td>
<td>Management of system groups defined in /etc/groups.</td>
</tr>
</tbody>
</table>

FIGURE E.3 THE CONFIGURATION SECTION

<table>
<thead>
<tr>
<th>Link Name</th>
<th>Description of Page Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>List of users allowed to access the web server.</td>
</tr>
<tr>
<td>Groups</td>
<td>List of possible access groups.</td>
</tr>
<tr>
<td>Access Limits</td>
<td>List of access limits for specific URL's.</td>
</tr>
<tr>
<td>Load/Save</td>
<td>Load/Save web user configuration in /etc/websum.conf.</td>
</tr>
</tbody>
</table>

FIGURE E.4 THE WEB USER MANAGEMENT SECTION
Figure E.5 The Administration Section

<table>
<thead>
<tr>
<th>Link Name</th>
<th>Description of Page Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logout</td>
<td>Exits the Web Manager.</td>
</tr>
<tr>
<td>Reboot</td>
<td>Resets the equipment.</td>
</tr>
<tr>
<td>Send Message</td>
<td>Sends messages to users logged in to a serial port.</td>
</tr>
<tr>
<td>Port Conversation</td>
<td>Does a port conversation through a serial port.</td>
</tr>
<tr>
<td>Download/Upload Image</td>
<td>Uses an FTP server to load and save a kernel image.</td>
</tr>
<tr>
<td>Load/Save Configuration</td>
<td>Uses flash memory or an FTP server to load or save the TS's configuration.</td>
</tr>
<tr>
<td>Set Date/Time</td>
<td>Set the TS's date and time.</td>
</tr>
<tr>
<td>Active Sessions</td>
<td>Shows the active sessions and allows the administrator to kill them.</td>
</tr>
<tr>
<td>Process Status</td>
<td>Shows the running processes and allows the administrator to kill them.</td>
</tr>
<tr>
<td>Restart Processes</td>
<td>Allows the administrator to start or stop some processes.</td>
</tr>
</tbody>
</table>

Figure E.6 The Information Section

<table>
<thead>
<tr>
<th>Link Name</th>
<th>Description of Page Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Statistics</td>
<td>Shows statistics for all active interfaces.</td>
</tr>
<tr>
<td>Serial Ports</td>
<td>Shows the status of all serial ports</td>
</tr>
<tr>
<td>Routing Table</td>
<td>Shows the routing table and allows the administrator to add or delete routes.</td>
</tr>
<tr>
<td>ARP Table</td>
<td>Shows the ARP cache.</td>
</tr>
<tr>
<td>IP Chains</td>
<td>Shows IP Chain Entries.</td>
</tr>
<tr>
<td>IP Rules</td>
<td>Shows Firewall, NAT and IP Accounting rules.</td>
</tr>
<tr>
<td>IP Statistics</td>
<td>Shows IP protocol statistics.</td>
</tr>
<tr>
<td>ICMP Statistics</td>
<td>Shows ICMP protocol statistics.</td>
</tr>
<tr>
<td>TCP Statistics</td>
<td>Shows TCP protocol statistics.</td>
</tr>
<tr>
<td>UDP Statistics</td>
<td>Shows UDP protocol statistics.</td>
</tr>
<tr>
<td>RAMDisk Usage</td>
<td>Shows the TS File System.</td>
</tr>
<tr>
<td>System Information</td>
<td>Shows information about the kernel, Time, CPU and Memory.</td>
</tr>
</tbody>
</table>
Troubleshooting the Web Configuration Manager

1. What to do when the initial web page does not appear.

Try pinging, telnetting or tracerouting to the Cyclades-TS to make sure it is reachable. If not, the problem is probably in the network or network configuration. Are the interfaces up? Are the IP addresses correct? Are filters configured which block the packets?

If the Cyclades-TS is reachable, see if the /bin/webs process is running by executing the command ps. If it is not, type /bin/webs & to start it. If the /bin/webs process is not being initialized during boot, change the file /etc/inittab.

2. How to restore the default configuration of the Web Configuration Manager

This would be required only when the root password was lost or the configuration file /etc/websum.conf was damaged.

From a console or telnet session, edit the file /etc/config_files. Find the reference to /etc/websum.conf and delete it. Save the modified /etc/config_files file. Execute the command saveconf. Reboot the system. Enter into the Web Configuration Manager with the default username and password (root/tslinux). Edit the file /etc/config_files and insert the reference to /etc/websum.conf.
Cyclades Corporation
41829 Albrae Street
Fremont, CA 94538 - USA
Phone: (510) 770-9727
Fax: (510) 770-0355
www.cyclades.com

Cyclades South America
Av. Santa Catarina, 155
04635-000 São Paulo, SP, Brazil
Phone: 55-11-5033-3333
Fax: 55-11-5033-3388
www.cyclades.com.br

Cyclades Philippines
Unit 804, LTA Bldg. 118 Perea St.
Legaspi Village
Makati City Philippines 1200
Phone: (632) 813-0353
Fax: (632) 655-2610
www.ph.cyclades.com

Cyclades Germany
Rennweg 33
85435 Erding - Germany
Phone: +49 (0)81 22 90 99-90
Fax: +49 (0)81 22 90 999-33
www.cyclades.de

Cyclades UK
Unit 6 Moorwell Road Business Park
Scunthorpe, North Lincolnhire DN17 2RU - UK
Phone: +44 1724 277179
Fax: +44 1724 279981
www.uk.cyclades.com